24 Clinical Trials for Various Conditions
This phase IV trial tests the impact of standard of care enfortumab vedotin and pembrolizumab followed by removal of all or part of the bladder (cytoreductive cystectomy) and/or removal of all or part of the tube that carriers urine from the kidneys to the bladder (ureterectomy) on outcomes in patients with bladder and upper urothelial tract that has spread to nearby tissue or lymph nodes (locally advanced) or that has spread from where it first started (primary site) to other places in the body (metastatic). Enfortumab vedotin is a monoclonal antibody, enfortumab, linked to an anticancer drug called vedotin. It works by helping the immune system to slow or stop the growth of tumor cells. Enfortumab attaches to a protein called nectin-4 on tumor cells in a targeted way and delivers vedotin to kill them. It is a type of antibody-drug conjugate. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the tumor and may interfere with the ability of tumor cells to grow and spread. Giving standard of care enfortumab vedotin and pembrolizumab followed by cytoreductive cystectomy and/or ureterectomy (CC/U) may improve outcomes in patients with locally advanced or metastatic bladder or upper urothelial tract cancer.
This phase II trial tests how well pemetrexed works in treating patients with urothelial bladder cancer and other solid tumors that have spread from where they first started (primary site) to other places in the body (metastatic) with mutations that result in a loss of function in the MLL4-protein/KMT2D-gene or UTX-protein/KDM6A-gene or MTAP enzyme. Loss of function due to a genetic mutation means a gene's activity may be reduced or eliminated. Mutations that result in a loss of function in the MLL4-protein or KMT2D-gene are found in 9.96% of all cancers including bladder carcinoma patients, esophageal squamous cell carcinoma and esophageal adenocarcinoma patients. In addition, mutations that result in a loss of function in the UTX-protein or KDM6A-gene are found in approximately 5% of all tumors, including bladder cancers, endometrial cancer, and esophagogastric cancer amongst many other tumor types. Pemetrexed is in a class of medications called antifolate antineoplastic agents. It works by stopping cells from using folic acid to make deoxyribonucleic acid and may kill tumor cells. Giving pemetrexed may increase response in patients with metastatic urothelial bladder cancer and other solid tumors with the loss of function in the MLL4-protein/KMT2D-gene or UTX-protein/KDM6A-gene or MTAP enzyme.
This clinical trial evaluates the impact of an education and navigation support tool (ENST) on patient and caregiver participation in care coordination for bladder cancer that has spread to nearby tissue or lymph nodes (locally advanced), to other places in the body (metastatic) or that cannot be removed by surgery (unresectable). Patients with advanced bladder cancer tend to be older, have multiple medical conditions and often have poor access to health care. An ENST may be an effective method to improve participation in treatment decision-making and care planning among patients with locally advanced, metastatic and unresectable bladder cancer and their caregivers.
This phase II trial tests how well enfortumab vedotin (EV) and pembrolizumab works in treating patients with bladder cancer of variant histology (a group of less common types of bladder cancer) that have spread to nearby tissue or lymph nodes (locally advanced) or that has spread from where it first started (primary site) to other places in the body (metastatic). Enfortumab vedotin is a monoclonal antibody, enfortumab, linked to an anticancer drug called vedotin. Enfortumab attaches to a protein called nectin-4 on cancer cells in a targeted way and delivers vedotin to kill them. It is a type of antibody-drug conjugate. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving enfortumab vedotin and pembrolizumab may kill more tumor cells in patients with locally advanced or metastatic bladder cancer of variant histology.
This phase III trial compares the effect of adding cabozantinib to avelumab versus avelumab alone in treating patients with urothelial cancer that has spread from where it first started (primary site) to other places in the body (metastatic). Cabozantinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as avelumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving cabozantinib and avelumab together may further shrink the cancer or prevent it from returning/progressing.
This phase Ib trial evaluates the best dose, potential benefits, and/or side effects of erdafitinib in combination with enfortumab vedotin in treating patients with bladder cancer that has spread from where it first started (primary site) to other places in the body (metastatic) and possesses genetic alterations in FGFR2/3 genes. Erdafitinib is in a class of medications called kinase inhibitors. It works by blocking the action of an abnormal FGFR protein that signals cancer cells to multiply. This may help keep cancer cells from growing and may kill them. Enfortumab vedotin is a monoclonal antibody, enfortumab, linked to an anticancer drug called vedotin. It works by helping the immune system to slow or stop the growth of cancer cells. Enfortumab attaches to a protein called nectin-4 on cancer cells in a targeted way and delivers vedotin to kill them. It is a type of antibody-drug conjugate. Giving erdafitinib in combination with enfortumab vedotin may shrink or stabilize metastatic bladder cancer with alterations in FGFR 2/3 genes.
This phase II trial studies the effect of nivolumab in urothelial cancer that has spread to other places in the body (metastatic), specifically in patients with aberrations in ARID1A gene (ARID1A mutation) and correlate with expression level of CXCL13, an immune cytokine. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving nivolumab may help control the disease in patients with urothelial cancer or solid tumors. This trial aims at enriching patient selection based on genomic and immunological attributes of the tumor.
This phase II trial investigates the side effects of tocilizumab, ipilimumab, and nivolumab in treating patients with melanoma, non-small cell lung cancer, or urothelial carcinoma that has spread to nearby tissue or lymph nodes (locally advanced). Immunotherapy with monoclonal antibodies, such as ipilimumab and nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Tocilizumab is a monoclonal antibody that may interfere with the immune system to decrease immune-related toxicities. Giving tocilizumab, ipilimumab, and nivolumab may kill more tumor cells.
This phase II trial compares the effect of adding radiation therapy to an immunotherapy drug called pembrolizumab versus pembrolizumab alone in treating patients with urothelial cancer that has spread from where it first started (primary site) to other places in the body (metastatic). The addition of radiation to immunotherapy may shrink the cancer, but it could also cause side effects. Immunotherapy with monoclonal antibodies such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Stereotactic body radiation therapy (SBRT) is a type of radiation therapy that uses high energy x-rays to kill tumor cells and shrink tumors. This method uses special equipment to position a patient and precisely deliver radiation to tumors with high precision. This method may kill tumor cells with fewer doses over a shorter period and may cause less damage to normal tissue than conventional radiation therapy. The combination of pembrolizumab and radiation therapy may be more efficient in killing tumor cells.
This phase Ib/II trial studies the side effects and best dose of plinabulin in combination with radiation therapy and immunotherapy in patients with select cancers that have spread to other places in the body (advanced) after progression on PD-1 or PD-L1 targeted antibodies. Plinabulin blocks tumor growth by targeting both new and existing blood vessels going to the tumor as well as killing tumor cells. Immunotherapy may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Giving plinabulin in combination with radiation therapy and immunotherapy may work better in treating advanced cancers.
This research study is an open label study designed to evaluate the safety and translational correlative changes of the combination of propranolol hydrochloride and immune checkpoint inhibitors (ICI) in subjects with urothelial carcinoma.
This phase III trial compares the usual chemotherapy treatment to eribulin plus gemcitabine in treating patients with urothelial cancer that has spread from where it first started (primary site) to other places in the body (metastatic). Chemotherapy drugs, such as eribulin, gemcitabine, docetaxel, paclitaxel, and sacituzumab govitecan work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. This trial aims to see whether adding eribulin to standard of care chemotherapy may work better in treating patients with metastatic urothelial cancer.
This phase I/II trial studies the side effects and best dose of tazemetostat and how well it works when given together with pembrolizumab in treating patients with urothelial carcinoma that has spread to nearby tissue or lymph nodes (locally advanced ) or from where it first started (primary site) to other places in the body (metastatic). Tazemetostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving tazemetostat and pembrolizumab may work better in treating patients with urothelial carcinoma compared to pembrolizumab without tazemetostat.
This phase II trial studies the side effects and how well radiation therapy and durvalumab with or without tremelimumab work in treating participants with bladder cancer that cannot be removed by surgery, has spread to nearby tissue or lymph nodes, or that has spread to other parts of the body. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Monoclonal antibodies, such as durvalumab and tremelimumab, may interfere with the ability of tumor cells to grow and spread. It is not yet known whether giving radiation therapy and durvalumab with or without tremelimumab will work better in treating participants with bladder cancer.
This phase Ib trial studies how well pembrolizumab works with combination chemotherapy in treating participants with small cell/neuroendocrine cancers of the urothelium or prostate that has spread to nearby tissue or lymph nodes or that has spread to other places in the body. Monoclonal antibodies, such as pembrolizumab, may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as etoposide, docetaxel, cisplatin, and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving pembrolizumab with platinum-based chemotherapy may work better in treating participants with small cell/neuroendocrine cancers of the urothelium or prostate.
This phase II trial studies how well atezolizumab when given with glycosylated recombinant human interleukin-7 (CYT107) works in treating patients with urothelial carcinoma that has spread to nearby tissue or lymph nodes (locally advanced), cannot be removed by surgery (inoperable), or has spread to other places in the body (metastatic). Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. CYT107 is a biological product naturally made by the body that may stimulate the immune system to destroy tumor cells. Giving atezolizumab and CYT107 may work better in treating patients with locally advanced, inoperable, or metastatic urothelial carcinoma compared to atezolizumab alone.
This phase II trial studies how well olaparib works in treating patients with bladder cancer and other genitourinary tumors with deoxyribonucleic acid (DNA)-repair defects that has spread to other places in the body (advanced or metastatic) and usually cannot be cured or controlled with treatment. PARPs are proteins that help repair DNA mutations. PARP inhibitors, such as olaparib, can keep PARP from working, so tumor cells can't repair themselves, and they may stop growing.
This phase II trial studies the side effects of atezolizumab with or without eribulin mesylate and how well they work in treating patients with urothelial cancer that has come back (recurrent), spread to nearby tissues or lymph nodes (locally advanced), or spread from where it first started (primary site) to other places in the body (metastatic). Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, such as eribulin mesylate, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving atezolizumab and eribulin mesylate may work better at treating urothelial cancer compared to atezolizumab alone.
This phase I trial studies the side effects and best doses of cabozantinib s-malate and nivolumab with or without ipilimumab in treating patients with genitourinary (genital and urinary organ) tumors that have spread from where it first started (primary site) to other places in the body (metastatic). Cabozantinib s-malate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. It is not yet known whether giving cabozantinib s-malate and nivolumab alone or with ipilimumab works better in treating patients with genitourinary tumors.
Objectives: Primary: Safety and tolerability of therapy with daratumumab in a cohort of patients with metastatic renal cell carcinoma and a cohort of patients with muscle invasive bladder cancer. Secondary: 1A. To assess the proportion of patients who achieve pathological CR with daratumumab in patients with muscle invasive bladder cancer. 1B. To assess the objective response rate (ORR) to daratumumab in patients with metastatic renal cell carcinoma. 2. To assess the progression free survival for patients with metastatic renal cell carcinoma receiving Daratumumab.
This study is being done to collect tissue samples to test how accurately a tumor response platform, Elephas, can predict clinical response across multiple types of immunotherapies, chemoimmunotherapy and tumor types.
This phase II trial tests whether nivolumab in combination with cabozantinib works in patients with mucosal melanoma. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Cabozantinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. It works by blocking the action of an abnormal protein that signals tumor cells to multiply. This helps stop the spread of tumor cells. Giving nivolumab in combination with cabozantinib could prevent cancer from returning.
This study examines at-home monitoring of patient-generated phsyiologic health data and patient-reported outcomes. Patient-generated health data using at-home monitoring devices and smart device applications are used more and more to measure value and quality in cancer care. This trial may show whether at-home monitoring programs can improve the care of patients after hospital discharge from surgery.
This phase Ib trial studies side effects and best dose of dasatinib in preventing oxaliplatin-induced peripheral neuropathy in patients with gastrointestinal cancers who are receiving FOLFOX regimen with or without bevacizumab. Drugs used in chemotherapy, such as leucovorin, fluorouracil, and oxaliplatin (FOLFOX regimen), work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. However, the buildup of oxaliplatin in the cranial nerves can result in damage or the nerves. Dasatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Blocking these enzymes may reduce oxaliplatin-induced peripheral neuropathy.