40 Clinical Trials for Various Conditions
This phase Ib trial tests the safety, side effects and best dose of tumor membrane vesicle (TMV) vaccine therapy alone and in combination with pembrolizumab and evaluates how well it works in treating patients with head and neck squamous cell cancer that has come back after a period of improvement (recurrent) or that has spread from where it first started (primary site) to other places in the body (metastatic). Vaccines made from a person's tumor cells, such as TMV vaccines, may help the body build an effective immune response to kill tumor cells. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving TMV vaccine therapy alone or with pembrolizumab may be safe, tolerable and/or effective in treating patients with recurrent and/or metastatic head and neck squamous cell cancer.
This clinical trial tests the impact of offering hearing tests (audiometry) close to home and remotely on participation in monitoring for treatment-related hearing loss in patients with head and neck squamous cell cancer receiving cisplatin and/or radiation. Cisplatin, a chemotherapy often used to treat head and neck cancers, and radiation given near the ear can cause hearing loss in some patients. Hearing loss can have a major negative impact on quality of life, contributing to social isolation and frustration. Identifying hearing changes may allow treatment changes to prevent further loss. Audiometry measures hearing loss using a graphic record of the softest sounds that a person can hear at various frequencies. It is recommended patients have a hearing test before, during and after treatment to monitor for any hearing loss. This is usually done in the office and performed on the same day as other visits whenever possible, however, patients who live far away or have stage IV cancer, may have more difficulty coming back for hearing tests. Offering close to home and remote audiometry may improve monitoring for hearing loss in patients with head and neck squamous cell cancer receiving cisplatin and/or radiation.
This phase II trial tests how well lovastatin and pembrolizumab work in treating patients with head and neck cancer that has come back after a period of improvement (recurrent) or that has spread from where it first started (primary site) to other places in the body (metastatic). Lovastatin is a drug used to lower the amount of cholesterol in the blood and may also cause tumor cell death. In addition, studies have shown that lovastatin may make the tumor cells more sensitive to immunotherapy. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving lovastatin and pembrolizumab may kill more tumor cells in patients with recurrent or metastatic head and neck cancer.
This phase III trial compares the effect of adding cetuximab to pembrolizumab versus pembrolizumab alone in treating patients with head and neck squamous cell carcinoma (HNSCC) that has come back after a period of improvement (recurrent) and/or that has spread from where it first started (primary site) to other places in the body (metastatic). Cetuximab is in a class of medications called monoclonal antibodies. It binds to a protein called EGFR, which is found on some types of tumor cells. This may help keep tumor cells from growing. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the tumor, and may interfere with the ability of tumor cells to grow and spread. Giving cetuximab and pembrolizumab together may be more effective at treating patients with recurrent and/or metastatic HNSCC than pembrolizumab alone.
This phase III trial compares pembrolizumab with radiation therapy to pembrolizumab without radiation therapy (standard therapy) given after pembrolizumab plus chemotherapy for the treatment of patients with squamous cell carcinoma of the head and neck that has spread from where it first started (primary site) to other places in the body (metastatic). Pembrolizumab is a type of immunotherapy that stimulates the body's immune system to fight cancer cells. Pembrolizumab targets and blocks a protein called PD-1 on the surface of certain immune cells called T-cells. Blocking PD-1 triggers the T-cells to find and kill cancer cells. Radiation therapy uses high-powered rays to kill cancer cells. Giving radiation with pembrolizumab may be more effective at treating patients with metastatic head and neck cancer than the standard therapy of giving pembrolizumab alone.
This phase II trial compares the effect of adding ipatasertib to pembrolizumab (standard immunotherapy) vs. pembrolizumab alone in treating patients with squamous cell cancer of the head and neck that has come back (recurrent) or that has spread from where it first started (primary site) to other places in the body (metastatic). Ipatasertib is in a class of medications called protein kinase B (AKT) inhibitors. It may stop the growth of tumor cells and may kill them. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving ipatasertib in combination with pembrolizumab may be more effective than pembrolizumab alone in improving some outcomes in patients with recurrent/metastatic squamous cell cancer of the head and neck.
This phase II trial studies the good and bad effects of the combination of drugs called cabozantinib and nivolumab in treating patients with melanoma or squamous cell head and neck cancer that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). Cabozantinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. This trial may help doctors determine how quickly patients can be divided into groups based on biomarkers in their tumors. A biomarker is a biological molecule found in the blood, other body fluids, or in tissues that is a sign of a normal or abnormal process or a sign of a condition or disease. A biomarker may be used to see how well the body responds to a treatment for a disease or condition. The two biomarkers that this trial is studying are "tumor mutational burden" and "tumor inflammation signature." Another purpose of this trial is to help doctors learn if cabozantinib and nivolumab shrink or stabilize the cancer, and whether patients respond differently to the combination depending on the status of the biomarkers.
This phase II/III compares the standard therapy (chemotherapy plus cetuximab) versus adding bevacizumab to standard chemotherapy, versus combination of just bevacizumab and atezolizumab in treating patients with head and neck cancer that has spread to other places in the body (metastatic or advanced stage) or has come back after prior treatment (recurrent). Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Bevacizumab is in a class of medications called antiangiogenic agents. It works by stopping the formation of blood vessels that bring oxygen and nutrients to tumor. This may slow the growth and spread of tumor. Cetuximab is in a class of medications called monoclonal antibodies. It binds to a protein called EGFR, which is found on some types of cancer cells. This may help keep cancer cells from growing. Cisplatin and carboplatin are in a class of chemotherapy medications known as platinum-containing compounds. They work by killing, stopping, or slowing the growth of cancer cells. Docetaxel is in a class of chemotherapy medications called taxanes. It stops cancer cells from growing and dividing and may kill them. The addition of bevacizumab to standard chemotherapy or combination therapy with bevacizumab and atezolizumab may be better than standard chemotherapy plus cetuximab in treating patients with recurrent/metastatic head and neck cancers.
This phase II trial studies the effect of cemiplimab in combination with low-dose paclitaxel and carboplatin in treating patients with squamous cell carcinoma of the head and neck that has come back (recurrent) or spread to other places in the body (metastatic). Immunotherapy with monoclonal antibodies, such as cemiplimab , may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, like paclitaxel and carboplatin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving cemiplimab in combination with paclitaxel and carboplatin may work better in treating recurrent or metastatic squamous cell carcinoma of the head and neck.
This clinical trial evaluates the tolerability of a physical activity program in head and neck cancer patients who are undergoing cancer treatment. The goal of this trial is to give patients exercises prescribed by a physical therapist that they are able to complete regularly at home. Increasing physical activity may help patients reduce fatigue, improve mood, increase physical performance, and decrease joint pain.
This phase I trial evaluates the best dose, possible benefits and/or side effects of combination therapy with elimusertib (BAY 1895344), stereotactic body radiation, and pembrolizumab in treating patients with head and neck squamous cell cancer that has come back (recurrent) and cannot be removed by surgery (unresectable). BAY 1895344 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Stereotactic body radiation therapy uses special equipment to position a patient and deliver radiation to tumors with high precision. This method may kill tumor cells with fewer doses over a shorter period and cause less damage to normal tissue. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving BAY 1895344, stereotactic body radiation therapy in combination with pembrolizumab may shrink or stabilize head and neck squamous cell cancer for longer than treatment with radiation and immunotherapy without BAY 1895344.
This phase II trial investigates how well sodium thiosulfate works in preventing ototoxicity (hearing loss/damage) in patients with squamous cell cancer of the head and neck that has spread to nearby tissue or lymph nodes (locally advanced) who are undergoing a chemoradiation. Sodium thiosulfate is a type of medication used to treat cyanide poisoning and to help lessen the side effects from cisplatin. Chemotherapy drugs, such as cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy with radiation therapy may kill more tumor cells. The purpose of this trial is to find out whether it is feasible to give sodium thiosulfate 4 hours after each cisplatin infusion along with standard of care radiation therapy in patients with head and neck cancer. Giving sodium thiosulfate after cisplatin may help decrease the risk of hearing loss.
This phase II trial studies how well celecoxib works through surgery and radiation therapy in treating patients with head and neck cancer that has spread to other places in the body (advanced). Celecoxib is Food and Drug Administration approved to treat arthritis, acute pain, and painful menstrual periods. Adding celecoxib to standard of care treatment may help to decrease the amount of time between surgery and radiation therapy.
This trial uses blood tests and questionnaires to study how well participants with head and neck cancer that has spread to other places in the body adhere to swallowing exercises to prevent future disease. Using blood tests to study cytokines (proteins related to the immune system) may help doctors learn if certain levels of cytokines affect whether or not side effects occur and if they put participants at risk for future disease. Questionnaires may help doctors learn about the reasons head and neck cancer participants may or may not follow the swallowing exercises that they are asked to perform after receiving radiation treatments.
RATIONALE: Swallowing exercise therapy may improve the quality of life of head and neck cancer patients undergoing chemotherapy or radiation therapy. PURPOSE: This randomized phase III trial is studying early onset of swallowing exercise therapy to see how well it works compared to late onset of swallowing exercise therapy in treating patients with head and neck cancer undergoing chemotherapy or radiation therapy.
RATIONALE: Drugs used in chemotherapy, such as docetaxel, work in different ways to stop the growth of tumor cells, either by killing the cells of by stopping them from dividing. Pemetrexed disodium may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase I trial is studying the side effects and best dose of giving pemetrexed disodium and docetaxel together in treating patients with advanced solid tumors.
RATIONALE: A specially modified virus called ONYX-015 may be able to kill tumor cells while leaving normal cells undamaged. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining ONYX-015 with chemotherapy may kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of ONYX-015 combined with cisplatin and fluorouracil in treating patients who have advanced head and neck cancer.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage tumor cells. Combining chemotherapy with radiation therapy may kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of combination chemotherapy plus radiation therapy in treating patients who have advanced and/or recurrent head and neck cancer.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage tumor cells. Drugs such as amifostine may prevent the side effects of radiation therapy. Combining more than one drug and combining radiation therapy and surgery with chemotherapy may kill more tumor cells. PURPOSE: Phase II trial to study the effectiveness of combining surgery, radiation therapy, and combination chemotherapy in treating patients who have recurrent head and neck cancer that has been treated previously with radiation therapy.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: Phase II trial to study the effectiveness of paclitaxel in treating patients with recurrent or refractory head and neck cancer.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses x-rays to damage tumor cells. Drugs, such as amifostine, may protect normal cells from the side effects of chemotherapy and radiation therapy. PURPOSE: Phase I/II trial to study the effectiveness of amifostine plus cisplatin, paclitaxel, and radiation therapy in treating patients who have advanced unresectable head and neck cancer.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one drug may kill more tumor cells. PURPOSE: Phase I/II trial to study the effectiveness of cisplatin and gemcitabine in treating patients with advanced squamous cell cancer of the head and neck that cannot be surgically removed.
This phase II trial studies how well pembrolizumab and cabozantinib in treating patients with head and neck squamous cell cancer that has come back or spread to other places in the body and cannot be removed by surgery. Monoclonal antibodies, such as pembrolizumab, may interfere with the ability of tumor cells to grow and spread. Cabozantinib may stop the growth of tumor cells by blocking some of the pathways needed for cell growth. Giving pembrolizumab and cabozantinib may improve the chances of tumor response in patients with head and neck squamous cell cancer.
This pilot clinical trial studies how well Prepare to Care kit works in improving caregiver support in patients with stage I-IV head and neck cancer that is new or has come back. Prepare to Care kit may increase knowledge about head and neck cancer and enhance stress-management skills.
This phase I trial studies the side effects and best dose of berzosertib (M6620) when given together with cisplatin and radiation therapy in treating patients with head and neck squamous cell carcinoma that has spread from where it started to nearby tissue or lymph nodes (locally advanced). M6620 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Giving M6620 together with cisplatin and radiation therapy may work better in treating patients with locally advanced head and neck squamous cell carcinoma.
This phase II/III trial studies how well radiation therapy works when given together with cisplatin, docetaxel, cetuximab, and/or atezolizumab after surgery in treating patients with high-risk stage III-IV head and neck cancer the begins in the thin, flat cells (squamous cell). Specialized radiation therapy that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue. Drugs used in chemotherapy, such as cisplatin and docetaxel, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Cetuximab is a monoclonal antibody that may interfere with the ability of tumor cells to grow and spread. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. The purpose of this study is to compare the usual treatment (radiation therapy with cisplatin chemotherapy) to using radiation therapy with docetaxel and cetuximab chemotherapy, and using the usual treatment plus an immunotherapy drug, atezolizumab.
This phase II trial is studying how well cediranib maleate works in treating patients with recurrent or newly diagnosed metastatic head and neck cancer. Cediranib maleate may stop the growth of head and neck cancer by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.
The purpose of the study is to conduct research of a new PET radiopharmaceutical in cancer patients. The uptake of the novel radiopharmaceutical 18F-FPPRGD2 will be assessed in study participants with glioblastoma multiforme (GBM), gynecological cancers, and renal cell carcinoma (RCC) who are receiving antiangiogenesis treatment.
This pilot clinical trial studies transoral robotic surgery (TORS) in treating patients with benign or malignant tumors of the head and neck. TORS is a less invasive type of surgery for head and neck cancer and may have fewer side effects and improve recovery
This randomized phase I/II trial studies the side effects and best way to give lyophilized black raspberries in preventing oral cancer in high-risk patients previously diagnosed with stage I-IV or in situ head and neck cancer. Chemoprevention is the use of certain drugs to keep cancer from forming. The use of lyophilized black raspberries may prevent oral cancer. Studying samples of oral cavity scrapings, blood, urine, and saliva in the laboratory from patients receiving lyophilized black raspberries may help doctors learn more about changes that occur in DNA and the effect of lyophilized back raspberries on biomarkers.