Treatment Trials

19 Clinical Trials for Various Conditions

Focus your search

TERMINATED
QUILT-3.009: Patients With Stage III (IIIB) or Stage (IV) Merkel Cell Carcinoma (MCC)
Description

Phase II study to determine the effects of aNK infusions in combination with ALT-803 in patients with stage III (IIIB) or stage (IV) merkel cell carcinoma (MCC).

ACTIVE_NOT_RECRUITING
Triple Immune Checkpoint Inhibition for Advanced or Metastatic PD-(L)1 Refractory Merkel Cell Carcinoma
Description

This phase II trial tests how well a combination of three immunotherapy drugs work for patients with Merkel cell carcinoma that has spread to lymph nodes and/or distant parts of the body and cannot be treated with surgery (advanced or metastatic MCC) and grew despite prior PD-(L)1 therapy. The three drugs INCMGA00012 (retifanlimab, anti-PD-1), INCAGN02385 (tuparstobart, anti-LAG-3), and INCAGN02390 (verzistobart, anti-TIM-3) are monoclonal antibodies given periodically via IV to reactivate the body's immune system to attack the cancer. This combination may stop tumor growth if tumors have grown despite anti-PD-(L)1 therapy alone.

RECRUITING
Personalized Neoantigen Peptide-Based Vaccine in Combination With Pembrolizumab for Treatment of Advanced Solid Tumors
Description

This phase I trial tests the safety and tolerability of an experimental personalized vaccine when given by itself and with pembrolizumab in treating patients with solid tumor cancers that have spread to other places in the body (advanced). The experimental vaccine is designed target certain proteins (neoantigens) on individuals' tumor cells. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving the personalized neoantigen peptide-based vaccine with pembrolizumab may be safe and effective in treating patients with advanced solid tumors.

Conditions
Anatomic Stage III Breast Cancer AJCC v8Anatomic Stage IIIA Breast Cancer AJCC v8Anatomic Stage IIIB Breast Cancer AJCC v8Anatomic Stage IIIC Breast Cancer AJCC v8Anatomic Stage IV Breast Cancer AJCC v8Clinical Stage III Cutaneous Melanoma AJCC v8Clinical Stage III Gastric Cancer AJCC v8Clinical Stage III Gastroesophageal Junction Adenocarcinoma AJCC v8Clinical Stage III Merkel Cell Carcinoma AJCC v8Clinical Stage IV Cutaneous Melanoma AJCC v8Clinical Stage IV Gastric Cancer AJCC v8Clinical Stage IV Gastroesophageal Junction Adenocarcinoma AJCC v8Clinical Stage IV Merkel Cell Carcinoma AJCC v8Clinical Stage IVA Gastric Cancer AJCC v8Clinical Stage IVA Gastroesophageal Junction Adenocarcinoma AJCC v8Clinical Stage IVB Gastric Cancer AJCC v8Clinical Stage IVB Gastroesophageal Junction Adenocarcinoma AJCC v8Locally Advanced Cervical CarcinomaLocally Advanced Endometrial CarcinomaLocally Advanced Gastric AdenocarcinomaLocally Advanced Gastroesophageal Junction AdenocarcinomaLocally Advanced Head and Neck Squamous Cell CarcinomaLocally Advanced Hepatocellular CarcinomaLocally Advanced Lung Non-Small Cell CarcinomaLocally Advanced Malignant Solid NeoplasmLocally Advanced MelanomaLocally Advanced Merkel Cell CarcinomaLocally Advanced Renal Cell CarcinomaLocally Advanced Skin Squamous Cell CarcinomaLocally Advanced Triple-Negative Breast CarcinomaLocally Advanced Unresectable Breast CarcinomaLocally Advanced Unresectable Cervical CarcinomaLocally Advanced Unresectable Gastric AdenocarcinomaLocally Advanced Unresectable Gastroesophageal Junction AdenocarcinomaLocally Advanced Unresectable Renal Cell CarcinomaLocally Advanced Urothelial CarcinomaMetastatic Cervical CarcinomaMetastatic Endometrial CarcinomaMetastatic Gastric AdenocarcinomaMetastatic Gastroesophageal Junction AdenocarcinomaMetastatic Head and Neck Squamous Cell CarcinomaMetastatic Hepatocellular CarcinomaMetastatic Lung Non-Small Cell CarcinomaMetastatic Malignant Solid NeoplasmMetastatic MelanomaMetastatic Merkel Cell CarcinomaMetastatic Renal Cell CarcinomaMetastatic Skin Squamous Cell CarcinomaMetastatic Triple-Negative Breast CarcinomaMetastatic Urothelial CarcinomaPathologic Stage III Cutaneous Melanoma AJCC v8Pathologic Stage III Gastric Cancer AJCC v8Pathologic Stage III Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage III Merkel Cell Carcinoma AJCC v8Pathologic Stage IIIA Cutaneous Melanoma AJCC v8Pathologic Stage IIIA Gastric Cancer AJCC v8Pathologic Stage IIIA Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IIIB Cutaneous Melanoma AJCC v8Pathologic Stage IIIB Gastric Cancer AJCC v8Pathologic Stage IIIB Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IIIC Cutaneous Melanoma AJCC v8Pathologic Stage IIIC Gastric Cancer AJCC v8Pathologic Stage IIID Cutaneous Melanoma AJCC v8Pathologic Stage IV Cutaneous Melanoma AJCC v8Pathologic Stage IV Gastric Cancer AJCC v8Pathologic Stage IV Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IV Merkel Cell Carcinoma AJCC v8Pathologic Stage IVA Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IVB Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage III Gastric Cancer AJCC v8Postneoadjuvant Therapy Stage III Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IIIA Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IIIB Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IV Gastric Cancer AJCC v8Postneoadjuvant Therapy Stage IV Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IVA Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IVB Gastroesophageal Junction Adenocarcinoma AJCC v8Prognostic Stage III Breast Cancer AJCC v8Prognostic Stage IIIA Breast Cancer AJCC v8Prognostic Stage IIIB Breast Cancer AJCC v8Prognostic Stage IIIC Breast Cancer AJCC v8Prognostic Stage IV Breast Cancer AJCC v8Skin Squamous Cell CarcinomaStage III Cervical Cancer AJCC v8Stage III Cutaneous Squamous Cell Carcinoma of the Head and Neck AJCC v8Stage III Hepatocellular Carcinoma AJCC v8Stage III Lung Cancer AJCC v8Stage III Renal Cell Cancer AJCC v8Stage III Uterine Corpus Cancer AJCC v8Stage IIIA Cervical Cancer AJCC v8Stage IIIA Hepatocellular Carcinoma AJCC v8Stage IIIA Lung Cancer AJCC v8Stage IIIA Uterine Corpus Cancer AJCC v8Stage IIIB Cervical Cancer AJCC v8Stage IIIB Hepatocellular Carcinoma AJCC v8Stage IIIB Lung Cancer AJCC v8Stage IIIB Uterine Corpus Cancer AJCC v8Stage IIIC Lung Cancer AJCC v8Stage IIIC Uterine Corpus Cancer AJCC v8Stage IIIC1 Uterine Corpus Cancer AJCC v8Stage IIIC2 Uterine Corpus Cancer AJCC v8Stage IV Cervical Cancer AJCC v8Stage IV Cutaneous Squamous Cell Carcinoma of the Head and Neck AJCC v8Stage IV Hepatocellular Carcinoma AJCC v8Stage IV Lung Cancer AJCC v8Stage IV Renal Cell Cancer AJCC v8Stage IV Uterine Corpus Cancer AJCC v8Stage IVA Cervical Cancer AJCC v8Stage IVA Hepatocellular Carcinoma AJCC v8Stage IVA Lung Cancer AJCC v8Stage IVA Uterine Corpus Cancer AJCC v8Stage IVB Cervical Cancer AJCC v8Stage IVB Hepatocellular Carcinoma AJCC v8Stage IVB Lung Cancer AJCC v8Stage IVB Uterine Corpus Cancer AJCC v8Triple-Negative Breast CarcinomaUnresectable Cervical CarcinomaUnresectable Endometrial CarcinomaUnresectable Gastric AdenocarcinomaUnresectable Gastroesophageal Junction AdenocarcinomaUnresectable Head and Neck Squamous Cell CarcinomaUnresectable Hepatocellular CarcinomaUnresectable Lung Non-Small Cell CarcinomaUnresectable Malignant Solid NeoplasmUnresectable MelanomaUnresectable Merkel Cell CarcinomaUnresectable Renal Cell CarcinomaUnresectable Skin Squamous Cell CarcinomaUnresectable Triple-Negative Breast CarcinomaUnresectable Urothelial Carcinoma
TERMINATED
Plinabulin in Combination With Radiation/Immunotherapy in Patients With Select Advanced Cancers After Progression on PD-1 or PD-L1 Targeted Antibodies
Description

This phase Ib/II trial studies the side effects and best dose of plinabulin in combination with radiation therapy and immunotherapy in patients with select cancers that have spread to other places in the body (advanced) after progression on PD-1 or PD-L1 targeted antibodies. Plinabulin blocks tumor growth by targeting both new and existing blood vessels going to the tumor as well as killing tumor cells. Immunotherapy may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Giving plinabulin in combination with radiation therapy and immunotherapy may work better in treating advanced cancers.

ACTIVE_NOT_RECRUITING
Improving Patient and Caregiver Understanding of Risks and Benefits of Immunotherapy for Advanced Cancer
Description

The purpose of this study is to refine and pilot test educational material developed to educate and support patients receiving immunotherapy for advanced cancer. The intervention is an educational video and question prompt list (QPL) to promote communication between patients, caregivers, and the oncology team about the risks and benefits of immunotherapy.

TERMINATED
Localized Radiation Therapy or Recombinant Interferon Beta and Avelumab With or Without Cellular Adoptive Immunotherapy in Treating Patients With Metastatic Merkel Cell Carcinoma
Description

This phase I/II trial studies the side effects and how well localized radiation therapy or recombinant interferon beta and avelumab with or without cellular adoptive immunotherapy works in treating patients with Merkel cell carcinoma that has spread to other parts of the body. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Interferon beta is a substance that can improve the body's natural response and may interfere with the growth of tumor cells. Monoclonal antibodies, such as avelumab, may help T lymphocytes kill tumor cells. For cellular adoptive immunotherapy, specific white blood cells are collected from the patient's blood and treated in the laboratory to recognize Merkel cell carcinoma. Infusing these cells back into the patient may help the body build an effective immune response to kill Merkel cell carcinoma. Giving localized radiation therapy or recombinant interferon beta and avelumab with or without cellular adoptive immunotherapy may be a better treatment for Merkel cell carcinoma.

COMPLETED
Pembrolizumab in Treating Patients With Advanced Merkel Cell Cancer
Description

This phase II trial studies how well pembrolizumab works in treating patients with Merkel cell cancer that cannot be removed by surgery or controlled with treatment, or has spread to other parts of the body. Pembrolizumab may stimulate the immune system to identify and destroy cancer cells.

TERMINATED
Viral Oncoprotein Targeted Autologous T Cell Therapy for Merkel Cell Carcinoma
Description

This phase I/II trial studies the side effects and best way to give laboratory treated autologous T cells together with aldesleukin and to see how well it works in treating patients with merkel cell carcinoma that has spread from the primary site (place where it started) to other places in the body. Biological therapies, such as cellular adoptive immunotherapy, may stimulate the immune system in different ways and stop tumor cells from growing. Aldesleukin may stimulate the white blood cells to kill tumor cells. Giving cellular adoptive immunotherapy with aldesleukin may be a better treatment for metastatic merkel cell carcinoma.

COMPLETED
Cixutumumab, Everolimus, and Octreotide Acetate in Treating Patients With Advanced Low to Intermediate Grade Neuroendocrine Carcinoma
Description

This phase I trial studies the side effects and best dose of cixutumumab when given together with everolimus and octreotide acetate in treating patients with advanced low- or intermediate-grade neuroendocrine cancer. Monoclonal antibodies, such as cixutumumab, may find tumor cells and help carry tumor-killing substances to them. Everolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Octreotide acetate may interfere with the growth of tumor cells and slow the growth of neuroendocrine cancer. Giving cixutumumab together with everolimus and octreotide acetate may be a better treatment for neuroendocrine cancer.

TERMINATED
Gene-Modified Immune Cells (FH-MCVA2TCR) in Treating Patients With Metastatic or Unresectable Merkel Cell Cancer
Description

This phase I/II trial studies the side effects of gene-modified immune cells (FH-MCVA2TCR) and to see how well they work in treating patients with Merkel cell cancer that has spread to other parts of the body (metastatic) or that cannot be removed by surgery (unresectable). Placing a gene that has been created in the laboratory into immune cells may improve the body's ability to fight Merkel cell cancer.

Conditions
SUSPENDED
Testing the Combination of Two Anticancer Drugs M1774 (Tuvusertib) and Avelumab to Evaluate Their Safety and Effectiveness in Treating Merkel Cell Skin Cancer, MATRiX Trial
Description

This phase II trial compares tuvusertib in combination with avelumab to tuvusertib alone to determine whether the combination therapy will lengthen the time before the cancer starts getting worse in patients with Merkel cell cancer that has not responded to previous treatment (refractory). Tuvusertib is a drug that inhibits an enzyme called ataxia telangiectasia and Rad3 related (ATR) kinase, which is an enzyme that plays a role in repair of damaged deoxyribonucleic acid (DNA) as well as tumor cell replication and survival. It may lead to tumor cell death by inhibiting ATR kinase activity. Immunotherapy with monoclonal antibodies, such as avelumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving tuvusertib in combination with avelumab may lengthen the time before Merkel cell cancer starts getting worse compared to giving avelumab alone.

RECRUITING
Immunotherapy in Combination With Prednisone and Sirolimus for Kidney Transplant Recipients With Unresectable or Metastatic Skin Cancer
Description

This phase II trial tests the combination of nivolumab and ipilimumab with sirolimus and prednisone for the treatment of skin (cutaneous) cancer that cannot be removed by surgery (unresectable) or that has spread from where it first started to other places in the body (metastatic) in kidney transplant recipients. Immunotherapy with nivolumab and ipilimumab, may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Sirolimus and prednisone are immunosuppressants that are given to keep the body from rejecting the transplanted kidney. Giving nivolumab and ipilimumab in combination with sirolimus and prednisone may kill more cancer cells, while also keeping the transplanted kidney healthy, in patients with unresectable or metastatic cutaneous cancer who have received a kidney transplant.

ACTIVE_NOT_RECRUITING
Tacrolimus, Nivolumab, and Ipilimumab in Treating Kidney Transplant Recipients With Selected Unresectable or Metastatic Cancers
Description

This phase I trial studies how well tacrolimus, nivolumab, and ipilimumab work in treating kidney transplant recipients with cancer that cannot be removed by surgery (unresectable) or has spread to other places in the body (metastatic). Tacrolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving tacrolimus, nivolumab, and ipilimumab may work better in treating kidney transplant recipients with cancer compared to chemotherapy, surgery, radiation therapy, or targeted therapies.

ACTIVE_NOT_RECRUITING
Testing the Addition of Radiation Therapy to Immunotherapy for Merkel Cell Carcinoma
Description

This randomized phase II trial studies how well pembrolizumab with or without stereotactic body radiation therapy works in treating patients with Merkel cell cancer that has spread to other places in the body (advanced). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Stereotactic body radiation therapy uses special equipment to position a patient and deliver radiation to tumors with high precision. This method can kill tumor cells with fewer doses over a shorter period and cause less damage to normal tissue. Giving pembrolizumab with stereotactic body radiation therapy may work better in treating patients with Merkel cell cancer.

RECRUITING
Study of Avelumab and/or Radiation Therapy in People With Advanced Merkel Cell Carcinoma
Description

This study will test the use of comprehensive ablative radiation therapy (CART), with the immunotherapy drug avelumab, in people with Merkel cell carcinoma (MCC) that has progressed after treatment and cannot be removed with surgery. The study researchers want to find out if CART works well when combined with avelumab.

COMPLETED
Oblimersen in Treating Patients With Merkel Cell Carcinoma
Description

This phase II trial is studying how well oblimersen works in treating patients with Merkel cell cancer. Biological therapies, such as oblimersen, may interfere with the growth of tumor cells and slow the growth of Merkel cell carcinoma (skin cancer).

RECRUITING
In Situ Immunomodulation With CDX-301, Radiation Therapy, CDX-1140 and Poly-ICLC in Patients w/ Unresectable and Metastatic Solid Tumors
Description

This phase I trial evaluates the safety and effectiveness of in situ immunomodulation with CDX-301, radiotherapy, CDX-1140 and Poly-ICLC (Cohort A) and these with intravenous (IV) pembrolizumab and subcutaneous (SC) tocilizumab (Cohort B) in treating patients with unresectable and measurable metastatic melanoma, cutaneous squamous cell carcinoma (SCC), basal cell carcinoma (BCC), Merkel cell carcinoma, high-grade bone and soft tissue sarcoma or HER2/neu(-) breast cancer. CDX-301 may induce cross-presenting dendritic cells, master regulators in the immune system. Radiation therapy uses high energy to kill tumor cells and release antigens that may be picked up, processed and presented by cross-presenting dendritic cells. CDX-1140 and Poly-ICLC may activate tumor antigen-loaded,cross-presenting dendritic cells, and generate tumor-specific T lymphocytes, a type of immune cells, that can search out and attack cancers. Giving immune modulators and radiation therapy may stimulate tumor cell death and activate the immune system.

RECRUITING
A Study of VET3-TGI in Patients With Solid Tumors
Description

VET3-TGI is an oncolytic immunotherapy designed to treat advanced cancers. VET3-TGI has not been given to human patients yet, and the current study is designed to find a safe and effective dose of VET3-TGI when administered by direct injection into tumor(s) (called an intratumoral injection) or when given intravenously (into the vein) both alone and in combination with pembrolizumab in patients with solid tumors (STEALTH-001).