31 Clinical Trials for Various Conditions
This randomized phase I/II trial studies the side effects and best way to give lyophilized black raspberries in preventing oral cancer in high-risk patients previously diagnosed with stage I-IV or in situ head and neck cancer. Chemoprevention is the use of certain drugs to keep cancer from forming. The use of lyophilized black raspberries may prevent oral cancer. Studying samples of oral cavity scrapings, blood, urine, and saliva in the laboratory from patients receiving lyophilized black raspberries may help doctors learn more about changes that occur in DNA and the effect of lyophilized back raspberries on biomarkers.
This phase II trial studies how well docetaxel, cisplatin and fluorouracil work in treating patients with previously untreated stage II-IV nasal cavity and/or paranasal sinus cancer. Drugs used in chemotherapy, such as docetaxel, cisplatin and fluorouracil, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
This randomized phase II trial studies how well chemotherapy before surgery and radiation therapy works compared to surgery and radiation therapy alone in treating patients with nasal and paranasal sinus cancer that can be removed by surgery. Drugs used in chemotherapy, such as docetaxel, cisplatin, and carboplatin work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high-energy x-rays to kill tumor cells and shrink tumors. Giving chemotherapy before surgery and radiation therapy may make the tumor smaller and reduce the amount of normal tissue that needs to be removed and treated with radiation.
This phase I/II trial studies the side effects of pembrolizumab and vorinostat in treating patients with squamous cell head and neck cancer or salivary gland cancer that has come back, has spread to other places in the body and/or cannot be removed by surgery. Monoclonal antibodies, such as pembrolizumab, may interfere with the ability of tumor cells to grow and spread. Vorinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving pembrolizumab together with vorinostat may be a better treatment for head and neck cancer or salivary gland cancer.
This phase II trial studies how well giving temsirolimus together with cetuximab works compared to temsirolimus alone in treating patients with recurrent and/or metastatic head and neck cancer who did not respond to previous therapy. Temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. It is not yet known whether giving temsirolimus together with cetuximab is more effective than giving temsirolimus alone.
This phase I trial studies the side effects and the best dose of lenalidomide when given together with cetuximab in treating patients with colorectal cancer or head and neck cancer that has spread to other places in the body and usually cannot be cured or controlled with treatment. Biological therapies, such as lenalidomide, use substances made from living organisms that may stimulate the immune system in different ways and stop tumor cells from growing. Monoclonal antibodies, such as cetuximab, may block tumor growth in different ways by targeting certain cells. Giving lenalidomide together with cetuximab may be a better treatment for colorectal cancer or head and neck cancer.
This randomized phase II trial studies how well ficlatuzumab with or without cetuximab works in treating patients with head and neck squamous cell carcinoma that has come back or spread to other places in the body and resistant to cetuximab treatment. Monoclonal antibodies, such as ficlatuzumab and cetuximab, may block growth signals that lets a tumor cell survive and reproduce, and helps the immune system recognize and fight head and neck squamous cell carcinoma.
The purpose of the study is to conduct research of a new PET radiopharmaceutical in cancer patients. The uptake of the novel radiopharmaceutical 18F-FPPRGD2 will be assessed in study participants with glioblastoma multiforme (GBM), gynecological cancers, and renal cell carcinoma (RCC) who are receiving antiangiogenesis treatment.
This phase II trial studies how well celecoxib works through surgery and radiation therapy in treating patients with head and neck cancer that has spread to other places in the body (advanced). Celecoxib is Food and Drug Administration approved to treat arthritis, acute pain, and painful menstrual periods. Adding celecoxib to standard of care treatment may help to decrease the amount of time between surgery and radiation therapy.
This phase I trial studies the side effects and best dose of stereotactic body radiation therapy (SBRT) in treating participants with head and neck cancer that has spread from where it started to nearby tissue or lymph nodes and is at high risk for continuing to spread because the participant cannot undergo standard chemotherapy. Stereotactic body radiation therapy is a specialized radiation therapy that delivers radiation directly to the tumor in smaller doses over several days, which may kill more tumor cells and cause less damage to normal tissue.
This phase I trial is studying the side effects of gefitinib in treating patients with metastatic or unresectable head and neck cancer or non-small cell lung cancer. Gefitinib may stop the growth of cancer cells by blocking the enzymes necessary for their growth
This pilot research trial studies circulating tumor deoxyribonucleic acid (DNA) in predicting outcomes in patients with stage IV head and neck cancer or stage III-IV non-small cell lung cancer. Studying circulating tumor DNA from patients with head and neck or lung cancer in the laboratory may help doctors predict how well patients will respond to treatment.
This pilot randomized phase I/II trial studies the side effects and best dose of PI3K inhibitor BKM120 when given together with cetuximab and to see how well it works in treating patients with recurrent or metastatic head and neck cancer. PI3K inhibitor BKM120 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of tumors to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Giving PI3K inhibitor BKM120 together with cetuximab may kill more tumor cells
This phase I trial studies the side effects and best dose of cetuximab when given together with everolimus in treating patients with metastatic or recurrent colon cancer or head and neck cancer. Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of the tumor to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Everolimus may stop the growth of tumor cells by blocking blood flow to the tumor. Giving cetuximab together with everolimus may be an effective treatment for colon cancer or head and neck cancer
This phase I trial studies how well talactoferrin works in treating patients with relapsed or refractory non-small cell lung cancer (NSCLC) or squamous cell head and neck cancer. Biological therapies, such as talactoferrin, may stimulate the immune system in different ways and stop tumor cells from growing
This phase I trial studies the side effects and best dose of TLR8 Agonist VTX-2337 when given together with cetuximab in treating patients with locally advanced, recurrent, or metastatic squamous cell cancer of the head and neck (SCCHN). Biological therapies, such as TLR8 Agonist VTX-2337 may stimulate the immune system in different ways and stop tumor cells from growing. Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Giving TLR8 Agonist VTX-2337 together with cetuximab may kill more tumor cells.
This phase II trial is studying the how well saracatinib works in treating patients with metastatic or recurrent head and neck cancer. Saracatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth
This phase II trial studies how well dasatinib works in treating patients with head and neck cancer that has come back or spread to other areas of the body. Dasatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase II trial studies how well lapatinib ditosylate works in treating patients with metastatic or recurrent head and neck cancer. Lapatinib ditosylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
Sorafenib may stop the growth of tumor cells by blocking the enzymes necessary for their growth. It may also stop the growth of tumor cells by stopping blood flow to the tumor. This phase II trial is studying how well sorafenib works in treating patients with recurrent or metastatic head and neck cance
Randomized phase II trial to study the effectiveness of ixabepilone in treating patients who have metastatic or recurrent head and neck cancer. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die
RATIONALE: Immunotoxins can locate tumor cells and kill them without harming normal cells. Immunotoxin therapy may be an effective treatment for advanced cancer. PURPOSE: Phase I trial to study the effectiveness of immunotoxins in treating patients who have advanced cancer.
This phase I/II trial studies the side effects and the best dose of sorafenib tosylate and docetaxel when given together with cisplatin and to see how well they work in treating patients with recurrent or metastatic squamous cell carcinoma of the head and neck. Drugs used in chemotherapy, such as cisplatin and docetaxel, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Sorafenib tosylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Sorafenib tosylate may also help cisplatin and docetaxel work better by making tumor cells more sensitive to the drugs. Giving sorafenib tosylate, cisplatin, and docetaxel may be an effective treatment for squamous cell carcinoma of the head and neck.
Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Sorafenib tosylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor. It is not yet known whether cetuximab is more effective when given alone or together with sorafenib tosylate in treating patients with head and neck cancer. This randomized phase II trial is studying cetuximab to see how well it works when given together with or without sorafenib tosylate in treating patients with refractory, recurrent, and/or metastatic head and neck cancer.
This randomized phase II trial is studying bortezomib and irinotecan to see how well they work compared to bortezomib alone in treating patients with locally recurrent or metastatic squamous cell carcinoma of the head and neck. Bortezomib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as irinotecan, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving bortezomib together with irinotecan may kill more tumor cells. It is not yet known whether giving bortezomib together with irinotecan is more effective than bortezomib alone in treating head and neck cancer.
This phase I/Ib trial tests the safety and best dose of ipatasertib in combination with the usual treatment approach using chemotherapy together with radiation therapy ("chemo-radiation") in patients with head and neck cancer. Ipatasertib is in a class of medications called protein kinase B (AKT) inhibitors. It may stop the growth of tumor cells and may kill them. Cisplatin which is a chemotherapy used in this trial is in a class of medications known as platinum-containing compounds. It works by killing, stopping or slowing the growth of cancer cells. Radiation therapy uses high energy to kill tumor cells and shrink tumors. Giving ipatasertib in combination with chemo-radiation may be better than chemo-radiation alone in treating patients with advanced head and neck cancer.
This phase I trial is studying the side effects and best dose of giving 7-hydroxystaurosporine together with irinotecan hydrochloride in treating patients with metastatic or unresectable solid tumors, including triple-negative breast cancer (currently enrolling only patients with triple-negative breast cancer since 6/8/2007). Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Giving 7-hydroxystaurosporine together with irinotecan hydrochloride may help kill more cancer cells by making tumor cells more sensitive to the drug.
Phase I trial to study the effectiveness of erlotinib in treating patients who have metastatic or unresectable solid tumors and liver or kidney dysfunction. Biological therapies such as erlotinib may interfere with the growth of tumor cells and slow the growth of the tumor
RATIONALE: Studying protein expression in sentinel lymph node tissue from patients with cancer in the laboratory may help doctors identify and learn more about biomarkers related to cancer. It may also help the study of cancer in the future. PURPOSE: This laboratory study is evaluating OX-40 protein expression in the sentinel lymph nodes of patients with cancer.
RATIONALE: Drugs used in chemotherapy, such as cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Cryoablation kills cancer cells by freezing them. Giving chemotherapy together with cryoablation may kill more cancer cells. PURPOSE: This clinical trial is studying how well giving cyclophosphamide together with cryoablation works in treating patients with advanced or metastatic epithelial cancer.