26 Clinical Trials for Various Conditions
This phase II trial studies the effect of nivolumab in urothelial cancer that has spread to other places in the body (metastatic), specifically in patients with aberrations in ARID1A gene (ARID1A mutation) and correlate with expression level of CXCL13, an immune cytokine. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving nivolumab may help control the disease in patients with urothelial cancer or solid tumors. This trial aims at enriching patient selection based on genomic and immunological attributes of the tumor.
This phase Ib/II trial studies the side effects and best dose of plinabulin in combination with radiation therapy and immunotherapy in patients with select cancers that have spread to other places in the body (advanced) after progression on PD-1 or PD-L1 targeted antibodies. Plinabulin blocks tumor growth by targeting both new and existing blood vessels going to the tumor as well as killing tumor cells. Immunotherapy may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Giving plinabulin in combination with radiation therapy and immunotherapy may work better in treating advanced cancers.
This phase II trial studies the side effects and how well radiation therapy and durvalumab with or without tremelimumab work in treating participants with bladder cancer that cannot be removed by surgery, has spread to nearby tissue or lymph nodes, or that has spread to other parts of the body. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Monoclonal antibodies, such as durvalumab and tremelimumab, may interfere with the ability of tumor cells to grow and spread. It is not yet known whether giving radiation therapy and durvalumab with or without tremelimumab will work better in treating participants with bladder cancer.
This phase Ib trial studies how well pembrolizumab works with combination chemotherapy in treating participants with small cell/neuroendocrine cancers of the urothelium or prostate that has spread to nearby tissue or lymph nodes or that has spread to other places in the body. Monoclonal antibodies, such as pembrolizumab, may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as etoposide, docetaxel, cisplatin, and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving pembrolizumab with platinum-based chemotherapy may work better in treating participants with small cell/neuroendocrine cancers of the urothelium or prostate.
This phase II trial studies how well atezolizumab when given with glycosylated recombinant human interleukin-7 (CYT107) works in treating patients with urothelial carcinoma that has spread to nearby tissue or lymph nodes (locally advanced), cannot be removed by surgery (inoperable), or has spread to other places in the body (metastatic). Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. CYT107 is a biological product naturally made by the body that may stimulate the immune system to destroy tumor cells. Giving atezolizumab and CYT107 may work better in treating patients with locally advanced, inoperable, or metastatic urothelial carcinoma compared to atezolizumab alone.
This phase I trial studies the best dose and side effects of trigriluzole in combination with nivolumab and pembrolizumab in treating patients with solid malignancies or lymphoma that has spread to other places in the body or cannot be removed by surgery. Trigriluzole may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as nivolumab and pembrolizumab, may interfere with the ability of tumor cells to grow and spread. Giving trigriluzole in combination with nivolumab and pembrolizumab may work better at treating patients with solid malignancies or lymphoma.
This pilot research trial studies how well myeloid derived suppressor cells (MDSC) clinical assay works in finding and monitoring cancer cells in blood and urine samples from patients with or without localized or metastatic bladder cancer. Studying samples of blood and urine from patients with or without bladder cancer in the laboratory may help doctors identify and learn more about biomarkers related to cancer and may help doctors improve ways to diagnose and treat patients.
This pilot trial studies how well nanoparticle albumin-bound rapamycin works in treating patients with cancer that as has spread to other places in the body and usually cannot be cured or controlled with treatment (advanced cancer) and that has an abnormality in a protein called mechanistic target of rapamycin (mTOR). Patients with this mutation are identified by genetic testing. Patients then receive nanoparticle albumin-bound rapamycin, which may stop the growth of cancer cells by blocking the mTOR enzyme, which is needed for cell growth and multiplication. Using treatments that target a patient's specific mutation may be a more effective treatment than the standard of care treatment.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining radiation therapy with chemotherapy with may kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of chemotherapy with vinorelbine and paclitaxel plus radiation therapy in treating patients with advanced cancer arising in the pelvis.
This phase II trial investigates the side effects of tocilizumab, ipilimumab, and nivolumab in treating patients with melanoma, non-small cell lung cancer, or urothelial carcinoma that has spread to nearby tissue or lymph nodes (locally advanced). Immunotherapy with monoclonal antibodies, such as ipilimumab and nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Tocilizumab is a monoclonal antibody that may interfere with the immune system to decrease immune-related toxicities. Giving tocilizumab, ipilimumab, and nivolumab may kill more tumor cells.
This phase Ib trial studies side effects and best dose of dasatinib in preventing oxaliplatin-induced peripheral neuropathy in patients with gastrointestinal cancers who are receiving FOLFOX regimen with or without bevacizumab. Drugs used in chemotherapy, such as leucovorin, fluorouracil, and oxaliplatin (FOLFOX regimen), work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. However, the buildup of oxaliplatin in the cranial nerves can result in damage or the nerves. Dasatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Blocking these enzymes may reduce oxaliplatin-induced peripheral neuropathy.
This randomized pilot clinical trial studies health care coach support in reducing acute care use and cost in patients with cancer. Health care coach support may help cancer patients to make decisions about their care that matches what is important to them with symptom management.
This phase I trial studies the side effects and best dose of palbociclib with cisplatin or carboplatin in treating patients with solid tumors that have spread to other places and usually cannot be cured or controlled with treatment. Palbociclib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cisplatin and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving palbociclib with cisplatin or carboplatin may help stop tumor growth in patients with advanced solid tumors.
This randomized clinical trial studies the Family Caregiver Palliative Care Intervention in supporting caregivers of patients with stage II-IV gastrointestinal, gynecologic, urologic and lung cancers. Education and telephone counseling may reduce stress and improve the well-being and quality of life of caregivers of cancer patients.
This phase I trial studies the side effects and best dose of romidepsin in treating patients with lymphoma, chronic lymphocytic leukemia, or solid tumors with liver dysfunction. Romidepsin may stop the growth of cancer cells by entering the cancer cells and by blocking the activity of proteins that are important for the cancer's growth and survival.
This phase I trial studies the side effects and best schedule of vaccine therapy with or without sirolimus in treating patients with cancer-testis antigen (NY-ESO-1) expressing solid tumors. Biological therapies, such as sirolimus, may stimulate the immune system in different ways and stop tumor cells from growing. Vaccines made from a person's white blood cells mixed with tumor proteins may help the body build an effective immune response to kill tumor cells that express NY-ESO-1. Infusing the vaccine directly into a lymph node may cause a stronger immune response and kill more tumor cells. It is not yet known whether vaccine therapy works better when given with or without sirolimus in treating solid tumors.
RATIONALE: Monoclonal antibodies, such as RAV12, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. PURPOSE: This phase I trial is studying the side effects and best dose of RAV12 in treating patients with metastatic or recurrent adenocarcinoma.
RATIONALE: VEGF Trap may stop the growth of solid tumors or non-Hodgkin's lymphoma by stopping blood flow to the tumor. PURPOSE: This phase I trial is studying the side effects and best dose of intravenous VEGF Trap in treating patients with relapsed or refractory advanced solid tumors or non-Hodgkin's lymphoma.
RATIONALE: Intravenous VEGF Trap may stop the growth of solid tumors or non-Hodgkin's lymphoma by stopping blood flow to the cancer. PURPOSE: This phase I trial is studying the side effects of VEGF Trap in treating patients with relapsed or refractory advanced solid tumors or non-Hodgkin's lymphoma.
Phase I trial to study the effectiveness of trastuzumab plus R115777 in treating patients who have advanced or metastatic cancer. Monoclonal antibodies such as trastuzumab can locate tumor cells and either kill them or deliver tumor-killing substances to them without harming normal cells. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining trastuzumab with R115777 may kill more tumor cells.
RATIONALE: Inserting a gene that has been created in the laboratory into a person's white blood cells may make the body build an immune response to kill cancer cells. PURPOSE: Phase I trial to study the effectiveness of gene therapy in treating patients who have cancer that has not responded to previous therapy.
RATIONALE: MS-275 may stop the growth of cancer cells by blocking the enzymes necessary for their growth. PURPOSE: This phase I trial is studying the side effects and best dose of MS-275 in treating patients with advanced solid tumors or lymphoma.
This study examines at-home monitoring of patient-generated phsyiologic health data and patient-reported outcomes. Patient-generated health data using at-home monitoring devices and smart device applications are used more and more to measure value and quality in cancer care. This trial may show whether at-home monitoring programs can improve the care of patients after hospital discharge from surgery.
Phase I trial to study the effectiveness of erlotinib in treating patients who have metastatic or unresectable solid tumors and liver or kidney dysfunction. Biological therapies such as erlotinib may interfere with the growth of tumor cells and slow the growth of the tumor
Interleukin-12 may kill tumor cells by stopping blood flow to the tumor and by stimulating a person's white blood cells to kill cancer cells. Monoclonal antibodies such as trastuzumab can locate tumor cells and either kill them or deliver tumor-killing substances to them without harming normal cells. Phase I trial to study the effectiveness of interleukin-12 and trastuzumab in treating patients who have cancer that has high levels of HER2/neu and has not responded to previous therapy
RATIONALE: Studying protein expression in sentinel lymph node tissue from patients with cancer in the laboratory may help doctors identify and learn more about biomarkers related to cancer. It may also help the study of cancer in the future. PURPOSE: This laboratory study is evaluating OX-40 protein expression in the sentinel lymph nodes of patients with cancer.