116 Clinical Trials for Various Conditions
This phase Ib/II trial studies the side effects and best dose of EMB-01 when given together with osimertinib in patients with EGFR-mutant non-small cell lung cancer that has spread to other places in the body (advanced or metastatic) and has progressed on standard treatment. EMB-01 and osimertinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth in this type of cancer. EMB-01 in combination with osimertinib may work better in treating patients with EGFR-mutant advanced non-small cell lung cancer.
This early phase 1 trial will investigate the combination of low-dose interleukin-2 (IL-2) and pembrolizumab in patients with previously untreated stage IV non-small cell lung cancer (NSCLC). Preclinical data demonstrate reinvigoration of exhausted T cells into an effector-like phenotype with improved anti-tumor activity in response to this combination. This study will evaluate T cell function as well as clinical outcomes associated with this combination therapy.
This clinical trial investigates the effectiveness of a remote monitoring program for lifestyle changes in patients with lung cancer related fatigue (CRF). Fatigue is a common symptom of lung cancer and a side-effect of cancer treatments. CRF has a negative impact on patients' quality of life, daily activities, employment, social relationships and mood. Health coaches enable patients to develop and achieve self-determined wellness goals and assist patients to use their insight, personal strengths, goal setting, action steps, and accountability toward achieving healthy lifestyle changes. Remote monitoring with health-coaching may help relieve lung cancer related fatigue and increase the quality of life in cancer patients.
This phase II Lung-MAP treatment trial tests whether carboplatin and pemetrexed with or without selpercatinib works to shrink tumors in patients with RET fusion-positive non-small cell lung cancer that is stage IV or has not responded to previous RET directed therapy. Chemotherapy drugs, such as carboplatin and pemetrexed, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Selpercatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving selpercatinib in combination with carboplatin and pemetrexed may help lower the chance of the cancer growing and spreading.
This phase IIb trial studies the effect of a biobehavioral/cognitive (ABC) treatment on stress, depression, and anxiety in patients with stage IV lung cancer. Advanced lung cancer and stress or depression are associated with increased inflammation and decreased immunity. ABC is a combination of biobehavioral intervention, which studies the interaction between behavioral and biological processes, and cognitive therapy for the treatment for anxiety and depressive disorders. Giving ABC during lung cancer treatment may reduce stress, depression, and anxiety, and improve patients' quality of life and health.
This phase II trial tests whether subcutaneous atezolizumab can be effectively given at home with medical care provided primarily using telemedicine in patients with non-small cell lung cancer. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. This study may help determine if a telemedicine based approach that gives atezolizumab at home using a version of the drug designed for subcutaneous injection under the skin is safe and feasible.
This phase II trial tests whether a supportive care intervention (Resiliency among Older Adults Receiving Lung Cancer Treatment \[ROAR-LCT\]) is effective in improving physical and emotional wellbeing in patients with stage IIIA, IIIB, and IV lung cancer undergoing cancer treatment. Lung cancers are one of the most common cancers. Lung cancers occur in the chest and often cause symptoms for patients. Poor physical performance and negative mood are two risk factors for a decline in functional status. Targeted interventions may address these two risk factors and improve functional status and resilience. Physical therapy and relaxation interventions (i.e. progressive muscle relaxation) are two such interventions that may improve symptoms and quality of life for patients with cancer.
This phase I trial studies the side effects and best dose of COH06 with or without atezolizumab in patients with non-small cell lung cancer previously treated with PD-1 and/or PD-L1 immune checkpoint inhibitors that has spread to other places in the body (advanced) and that has not responded to previous treatment (refractory). NK cells are infection fighting blood cells that can kill tumor cells. The NK cells given in this study, COH06, will come from umbilical cord blood and will have a new gene put in them that makes them express PD-L1, and express and secrete IL-15. NK cells that express PD-L1 may kill more tumor cells, and IL-15 may allow the NK cells to live longer. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving COH06 without or without atezolizumab may help control the disease in patients with non-small cell lung cancer.
This phase I trial studies the side effects and best dose of PBF-1129 in combination with nivolumab in treating patients with non-small cell lung cancer that has come back (recurrent) or spread to other places in the body (metastatic). Immunotherapy with monoclonal antibodies, such as PBF-1129 and nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.
This clinical trial tests whether a video intervention improves patient understanding of tumor genomic testing in patients with cancer that has spread to other parts of the body (metastatic). Measuring how the video intervention affects patient understanding of tumor genomic testing in patients with metastatic cancer may help doctors provide patient-centered care by effectively communicating the importance of tumor genomic testing.
This clinical trial develops and tests a model of family caregiver education focused on the role of underserved family caregivers as providers of complex care in the home. Cancer patients have symptoms from their cancer or treatment and are then supported by family caregivers at home with tasks requiring technical skill. Family caregivers are often asked to provide complex care whether it involves decisions about managing symptoms or providing technical care for ports/pumps, tubes, or devices. Family caregivers often are not given enough information on how to provide care for patients at home needing complex care. The results from this study may help researchers refine and improve the intervention for caregivers through future research for caregivers on a much larger scale.
This phase Ib trial tests the side effects and best dose of minnelide when given together with osimertinib for the treatment of non-small cell lung cancer that has spread to other places in the body (advanced) and has a change (mutation) in a gene called EGFR. Minnelide is a biologically inactive compound that can be broken down in the body to produce a drug that rapidly releases the active compound triptolide when exposed to phosphatases in the bloodstream. Sometimes, mutations in the EGFR gene cause EGFR proteins to be made in higher than normal amounts on some types of cancer cells. This causes cancer cells to divide more rapidly. Osimertinib may stop the growth of tumor cells by blocking EGFR that is needed for cell growth in this type of cancer. Minnelide and osimertinib may work better in treating patients with EGFR mutant advanced non-small cell lung cancer.
This phase II trial studies how well hypofractionated radiation therapy after durvalumab and chemotherapy works to shrink tumors in patients with stage IV extensive stage small cell lung cancer. Hypofractionated radiation therapy delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells and have fewer side effects than a conventionally fractionated radiation course. Immunotherapy with monoclonal antibodies, such as durvalumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, such as carboplatin, cisplatin, and etoposide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Adding radiation after chemo and immunotherapy may help improve cancer control.
This phase II/III Lung-MAP trial studies how well immunotherapy treatment with N-803 (ALT-803) and pembrolizumab working in treating patients with non-small cell lung cancer that has spread to other places in the body (advanced). Natural killer cells, part of our immune system, are always on alert and ready to defend our bodies from many kinds of infection or rogue cells, such as those that cause cancer. N-803 (ALT-803) may activate natural killer cells so that they can stimulate an immune response to help fight cancer. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving N-803 (ALT-803) and pembrolizumab may help shrink and stabilize lung cancer or prevent it from returning.
This phase Ib/II trial studies the side effects and best dose of aurora A kinase inhibitor LY3295668 when given together with osimertinib in patients with EGFR-mutant non-squamous non-small cell lung cancer that has spread to other places in the body (advanced or metastatic). Aurora A kinase inhibitor LY3295668 and osimertinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving aurora A kinase inhibitor LY3295668 in combination with osimertinib may help control EGFR-mutant non-squamous non-small cell lung cancer.
This phase II trial studies the effect of bintrafusp alfa with pemetrexed and platinum-based chemotherapy (carboplatin or cisplatin) in treating patients with EGFR mutant non-small cell lung cancer that have spread to nearby tissue or lymph nodes (locally advanced) or other places in the body (metastatic) and cannot be removed by surgery, and remains despite treatment with tyrosine kinase inhibitors (Resistant). Immunotherapy with bintrafusp alfa, a bifunctional fusion protein composed of the monoclonal antibody anti-PD-L1 and TGF-beta, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Pemetrexed may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as carboplatin and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving bintrafusp alfa with pemetrexed and platinum-based chemotherapy may help to control the disease.
This study evaluates gut microbiome and functional status as modifiable biomarkers in predicting immunotherapy response and toxicity in patients with stage IV non-squamous non-small cell lung cancer receiving pembrolizumab alone or in combination with pemetrexed and carboplatin on the INSIGNIA trial. The goal of this study is to estimate the extent to which future interventions that seek to rationally modify the gut microbiome and/or functional status can improve outcomes.
This phase II trial investigates the side effects of tocilizumab, ipilimumab, and nivolumab in treating patients with melanoma, non-small cell lung cancer, or urothelial carcinoma that has spread to nearby tissue or lymph nodes (locally advanced). Immunotherapy with monoclonal antibodies, such as ipilimumab and nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Tocilizumab is a monoclonal antibody that may interfere with the immune system to decrease immune-related toxicities. Giving tocilizumab, ipilimumab, and nivolumab may kill more tumor cells.
This phase II trial studies the effects of temozolomide and atezolizumab as second or third line treatment for patients with small cell lung cancer that has spread to other places in the body (metastatic) or has come back (recurrent). Chemotherapy drugs, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving temozolomide and atezolizumab as second or third line treatment may help prolong survival in patients with small cell lung cancer.
This phase Ib trial is to find out the best dose and side effects of all-trans retinoic acid (ATRA) and atezolizumab in treating patients with non-small cell lung cancer that has come back (recurrent) or has spread to other places in the body (metastatic). All-trans retinoic acid (ATRA) is made in the body from vitamin A and helps cells to grow and develop. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving all-trans retinoic acid (ATRA) and atezolizumab may help treat patients with non-small cell lung cancer.
This phase Ib/II trial studies the side effects and best dose of plinabulin in combination with radiation therapy and immunotherapy in patients with select cancers that have spread to other places in the body (advanced) after progression on PD-1 or PD-L1 targeted antibodies. Plinabulin blocks tumor growth by targeting both new and existing blood vessels going to the tumor as well as killing tumor cells. Immunotherapy may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Giving plinabulin in combination with radiation therapy and immunotherapy may work better in treating advanced cancers.
This phase Ib trial finds the best dose and side effects of ensartinib and its effects when given with carboplatin, pemetrexed and bevacizumab for in treating patients with ALK-positive non-small cell lung cancer that is stage IIIC or IV, or has come back (recurrent). Ensartinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as carboplatin and pemetrexed, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Bevacizumab is a monoclonal antibody that may interfere with the ability of tumor cells to grow and spread. Giving ensartinib, carboplatin, pemetrexed and bevacizumab may help to control the disease.
This clinical trial focuses on a nurse-led program that is designed to help patients cope with worries, fears, and uncertainty about the future. The purpose of this study is to understand if the program is helpful and practical to carry out at medical centers and community clinics. This study may help patients learn more effective ways to cope and respond to your concerns and any unhelpful thoughts.
This phase III trial compares the effect of stereotactic radiosurgery to standard of care memantine and whole brain radiation therapy that avoids the hippocampus (the memory zone of the brain) for the treatment of small cell lung cancer that has spread to the brain. Stereotactic radiosurgery is a specialized radiation therapy that delivers a single, high dose of radiation directly to the tumor and may cause less damage to normal tissue. Whole brain radiation therapy delivers a low dose of radiation to the entire brain including the normal brain tissue. Hippocampal avoidance during whole-brain radiation therapy (HA-WBRT) decreases the amount of radiation that is delivered to the hippocampus which is a brain structure that is important for memory. The drug, memantine, is also often given with whole brain radiotherapy because it may decrease the risk of side effects related to thinking and memory. Stereotactic radiosurgery may decrease side effects related to memory and thinking compared to standard of care HA-WBRT plus memantine.
This phase I/II trial studies the best dose and effect of pimasertib in combination with bintrafusp alfa in treating patients with cancer that has spread to the brain (brain metastases). Immunotherapy with bintrafusp alfa, a bifunctional fusion protein composed of the monoclonal antibody anti-PD-L1 and TGF-beta, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Pimasertib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving pimasertib and bintrafusp alfa may help to prevent or delay the cancer from progressing (getting worse) and/or coming back.
This phase I/II trial studies the side effects of anti-CTLA4-NF monoclonal antibody (mAb) (BMS986218), nivolumab, and stereotactic body radiation therapy in treating patients with solid malignancies that has spread to other places in the body (metastatic). Immunotherapy with monoclonal antibodies, such as anti-CTLA4-NF mAb (BMS-986218) and nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Stereotactic body radiation therapy uses special equipment to position a patient and deliver radiation to tumors with high precision. This method may kill tumor cells with fewer doses over a shorter period and cause less damage to normal tissue. Giving -CTLA4-NF mAb (BMS986218), nivolumab, and stereotactic body radiation therapy may kill more tumor cells.
This phase Ib trial is to find out the best dose, possible benefits and/or side effects of osimertinib and tegavivint as first-line therapy in treating patients with EGFR-mutant non-small cell lung cancer that has spread to other places in the body (metastatic). Osimertinib and tegavivint may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase II trial studies the effect of avapritinib in treating malignant solid tumors that have a genetic change (mutation) in CKIT or PDGFRA and have spread to nearby tissue or lymph nodes (locally advanced) or other places in the body (metastatic). Avapritinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Avapritinib may help to control the growth of malignant solid tumors.
This phase Ib trial evaluates the best dose and side effects of MRX-2843 when given in combination with osimertinib in treating patients with EGFR gene mutant non-small cell lung cancer that has spread to other places in the body (advanced). MRX-2843 and osimertinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This early phase I trial tests the use of a radioactive tracer (a drug that is visible during an imaging test) known as 18F-FMAU, for imaging with positron emission tomography/computed tomography (PET/CT) in patients with brain cancer or cancer that has spread to the brain (brain metastases). A PET/CT scan is an imaging test that uses a small amount of radioactive tracer (given through the vein) to take detailed pictures of areas inside the body where the tracer is taken up. 18F-FMAU may also help find the cancer and how far the disease has spread. Magnetic resonance imaging (MRI) is a type of imaging test used to diagnose brain tumors. 18F-FMAU PET/CT in addition to MRI may make the finding and diagnosing of brain tumor easier.