24 Clinical Trials for Various Conditions
This pilot research trial studies circulating tumor deoxyribonucleic acid (DNA) in predicting outcomes in patients with stage IV head and neck cancer or stage III-IV non-small cell lung cancer. Studying circulating tumor DNA from patients with head and neck or lung cancer in the laboratory may help doctors predict how well patients will respond to treatment.
This randomized phase II trial studies how well photodynamic therapy with HPPH works in treating patients with squamous cell carcinoma of the oral cavity. Photodynamic therapy uses HPPH that becomes active when it is exposed to a certain kind of light. When the drug is active, cancer cells are killed. This may be effective against squamous cell carcinoma of the oral cavity.
This phase II trial studies how well paclitaxel and carboplatin before radiation therapy with paclitaxel works in treating human papillomavirus (HPV)-positive patients with stage III-IV oropharynx, hypopharynx, or larynx cancer. Drugs used in chemotherapy, such as paclitaxel and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high energy x rays to kill tumor cells. Giving paclitaxel and carboplatin before radiation therapy with paclitaxel may kill more tumor cells.
This phase I/II trial studies the side effects and the best dose of sorafenib tosylate and docetaxel when given together with cisplatin and to see how well they work in treating patients with recurrent or metastatic squamous cell carcinoma of the head and neck. Drugs used in chemotherapy, such as cisplatin and docetaxel, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Sorafenib tosylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Sorafenib tosylate may also help cisplatin and docetaxel work better by making tumor cells more sensitive to the drugs. Giving sorafenib tosylate, cisplatin, and docetaxel may be an effective treatment for squamous cell carcinoma of the head and neck.
This pilot randomized phase I/II trial studies the side effects and best dose of PI3K inhibitor BKM120 when given together with cetuximab and to see how well it works in treating patients with recurrent or metastatic head and neck cancer. PI3K inhibitor BKM120 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of tumors to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Giving PI3K inhibitor BKM120 together with cetuximab may kill more tumor cells
This phase I trial studies how well talactoferrin works in treating patients with relapsed or refractory non-small cell lung cancer (NSCLC) or squamous cell head and neck cancer. Biological therapies, such as talactoferrin, may stimulate the immune system in different ways and stop tumor cells from growing
This pilot clinical trial studies freeze-dried black raspberries (BRB) in preventing oral cancer recurrence in high at-risk Appalachian patients previously treated with surgery for oral cancer. Chemoprevention is the use of drugs natural products to keep cancer from developing, progressing, or recurring. Giving freeze-dried black raspberries may prevent oral cancer from forming or returning in oral cancer survivors.
This randomized phase I/II trial studies the side effects and best way to give lyophilized black raspberries in preventing oral cancer in high-risk patients previously diagnosed with stage I-IV or in situ head and neck cancer. Chemoprevention is the use of certain drugs to keep cancer from forming. The use of lyophilized black raspberries may prevent oral cancer. Studying samples of oral cavity scrapings, blood, urine, and saliva in the laboratory from patients receiving lyophilized black raspberries may help doctors learn more about changes that occur in DNA and the effect of lyophilized back raspberries on biomarkers.
This phase I trial studies the side effects and best dose of TLR8 Agonist VTX-2337 when given together with cetuximab in treating patients with locally advanced, recurrent, or metastatic squamous cell cancer of the head and neck (SCCHN). Biological therapies, such as TLR8 Agonist VTX-2337 may stimulate the immune system in different ways and stop tumor cells from growing. Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Giving TLR8 Agonist VTX-2337 together with cetuximab may kill more tumor cells.
Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Sorafenib tosylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor. It is not yet known whether cetuximab is more effective when given alone or together with sorafenib tosylate in treating patients with head and neck cancer. This randomized phase II trial is studying cetuximab to see how well it works when given together with or without sorafenib tosylate in treating patients with refractory, recurrent, and/or metastatic head and neck cancer.
This phase II trial is studying the how well saracatinib works in treating patients with metastatic or recurrent head and neck cancer. Saracatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth
This phase II trial studies how well dasatinib works in treating patients with head and neck cancer that has come back or spread to other areas of the body. Dasatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase II trial studies how well lapatinib ditosylate works in treating patients with metastatic or recurrent head and neck cancer. Lapatinib ditosylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This randomized phase II trial is studying bortezomib and irinotecan to see how well they work compared to bortezomib alone in treating patients with locally recurrent or metastatic squamous cell carcinoma of the head and neck. Bortezomib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as irinotecan, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving bortezomib together with irinotecan may kill more tumor cells. It is not yet known whether giving bortezomib together with irinotecan is more effective than bortezomib alone in treating head and neck cancer.
Sorafenib may stop the growth of tumor cells by blocking the enzymes necessary for their growth. It may also stop the growth of tumor cells by stopping blood flow to the tumor. This phase II trial is studying how well sorafenib works in treating patients with recurrent or metastatic head and neck cance
This phase I/II trial is studying the side effects of erlotinib and to see how well it works in treating patients with metastatic or unresectable non-small cell lung cancer, ovarian cancer, or squamous cell carcinoma (cancer) of the head and neck. Erlotinib may stop the growth of tumor cells by blocking the enzymes necessary for their growth
Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Erlotinib may stop the growth of tumor cells by blocking the enzymes necessary for tumor cell growth. Radiation therapy uses high-energy x-rays to damage tumor cells. Combining erlotinib with docetaxel may make the tumor cells more sensitive to radiation therapy and may kill more tumor cells. Phase I trial to study the maximum tolerated dose (MTD) of combining erlotinib with docetaxel and radiation therapy in treating patients who have locally advanced head and neck cancer
Randomized phase II trial to study the effectiveness of ixabepilone in treating patients who have metastatic or recurrent head and neck cancer. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die
This phase I trial studies the side effects and best dose of cetuximab when given together with everolimus in treating patients with metastatic or recurrent colon cancer or head and neck cancer. Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of the tumor to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Everolimus may stop the growth of tumor cells by blocking blood flow to the tumor. Giving cetuximab together with everolimus may be an effective treatment for colon cancer or head and neck cancer
This pilot clinical trial studies how well durvalumab before surgery works in treating patients with oral cavity or oropharynx cancer. Monoclonal antibodies, such as durvalumab, may interfere with the ability of tumor cells to grow and spread.
This randomized phase II trial studies how well combination chemotherapy with or without erlotinib hydrochloride works in treating patients with squamous cell carcinoma of the head and neck that has spread to other parts of the body or has come back. Drugs used in chemotherapy, such as docetaxel, cisplatin, and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Erlotinib hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving combination chemotherapy with or without erlotinib hydrochloride may be an effective treatment for squamous cell carcinoma of the head and neck.
The purpose of the study is to conduct research of a new PET radiopharmaceutical in cancer patients. The uptake of the novel radiopharmaceutical 18F-FPPRGD2 will be assessed in study participants with glioblastoma multiforme (GBM), gynecological cancers, and renal cell carcinoma (RCC) who are receiving antiangiogenesis treatment.
This randomized pilot clinical trial studies whether acetylcysteine oral rinse will lessen saliva thickness and painful mouth sores in patients with head and neck cancer undergoing radiation therapy. Side effects from radiation therapy to the head and neck, such as thickened saliva and mouth sores, may interfere with activities of daily living such as eating and drinking, and may also cause treatment to be stopped or delayed. Acetylcysteine rinse may reduce saliva thickness and mouth sores, and improve quality of life in patients with head and neck cancer undergoing radiation therapy.
This phase I trial is studying the side effects of gefitinib in treating patients with metastatic or unresectable head and neck cancer or non-small cell lung cancer. Gefitinib may stop the growth of cancer cells by blocking the enzymes necessary for their growth