495 Clinical Trials for Various Conditions
This will be a Phase 1, open-label study to evaluate the safety and efficacy of BEAM-201 in patients with R/R T-ALL or T-LLy. BEAM-201 is an allogeneic anti-CD7 CART therapy.
To learn if giving the study drugs calaspargase pegol-mknl and decitabine in combination with venetoclax can help to control relapsed/refractory T-ALL and T-LLy. The safety of this drug combination will also be studied.
The main purpose of this study is to evaluate the Composite Complete Remission Rate (CRc) of WU-CART-007 in Relapsed/Refractory (R/R) T-Cell Acute Lymphoblastic Leukemia (T-ALL)/Lymphoblastic Lymphoma (LBL) patients and to evaluate the efficacy of WU-CART-007 to induce complete Minimum Residual Disease (MRD) negative response
This is a clinical trial testing whether the addition of one of two chemotherapy agents, dasatinib or venetoclax, can improve outcomes for children and young adults with newly diagnosed T-cell acute lymphoblastic leukemia and lymphoma or mixed phenotype acute leukemia. Primary Objective * To evaluate if the end of induction MRD-negative rate is higher in patients with T-ALL treated with dasatinib compared to similar patients treated with 4-drug induction on AALL1231. * To evaluate if the end of induction MRD-negative rate is higher in patients with ETP or near-ETP ALL treated with venetoclax compared to similar patients treated with 4-drug induction on AALL1231. Secondary Objectives * To assess the event free and overall survival of patients treated with this therapy. * To compare grade 4 toxicities, event-free survival (EFS) and overall survival (OS) of patients treated with this therapy in induction and reinduction to toxicities of similar patients treated on TOT17.
This is a Phase 1/2, multicenter, open-label study to evaluate the safety and efficacy of BEAM-201 in patients with relapsed/refractory T-ALL or T-LL. This study consists of Phase 1 dose-exploration cohorts, Phase 1 dose-expansion cohort(s), a Phase 1 pediatric cohort (will enroll patients ages 1 to \< 12 years), and a Phase 2 cohort.
This is a phase 1, dose-escalation study (using 3 + 3 dose-limiting toxicity (DLT) criteria) evaluating the safety and tolerability of XmAb18968, as well as establishing a recommended phase II dose (RP2D) in subjects with T cell acute lymphoblastic leukemia (T-ALL) and T cell lymphoblastic (lymphoma) T-LBL (Group A) and acute myeloid leukemia (AML) (Group B).
A Phase I trial to determine the safety of targeted immunotherapy with daratumumab (DARA) IV after total body irradiation (TBI)-based myeloablative conditioning and allogeneic hematopoietic cell transplantation (HCT) for children, adolescents, and young adults (CAYA) with high risk T-cell acute lymphoblastic leukemia (T-ALL) or T-cell lymphoblastic lymphoma (T-LLy). Pre- and post-HCT NGS-MRD studies will be correlated with outcomes in children, adolescents, and young adults with T-ALL undergoing allogeneic HCT and post-HCT DARA treatment. The study will also evaluate T-cell repertoire and immune reconstitution prior to and following DARA post-HCT treatment and correlate with patient outcomes.
The purpose of this study is to evaluate the efficacy of daratumumab in addition to standard chemotherapy in pediatric participants with relapsed/refractory B-cell acute lymphoblastic leukemia (ALL)/lymphoblastic lymphoma (LL) and T-cell ALL/LL as measured by the complete response (CR) rate.
This is a phase-II study to evaluate the efficacy of a salvage regimen in children with relapsed T-cell ALL or lymphoma. Peg-asparaginase, mitoxantrone, intrathecal triples (IT) (intrathecal methotrexate/hydrocortisone/cytarabine) (ITMHA) and dexamethasone are commonly used drugs to treat relapsed or refractory acute lymphocytic leukemia or lymphoma (ALL). In this study, the investigators want to know if adding three drugs called panobinostat, bortezomib and liposomal vincristine (VSLI) to this regimen will result in remission (no signs or symptoms of leukemia or lymphoma). * Panobinostat has been approved by the FDA for treating adults with multiple myeloma, but it has not been approved for use in children and has not been given together with the other drugs used in this study. It has not been widely studied in children. * VSLI has been approved by the FDA for adults with relapsed or refractory ALL, but has not yet been approved for treating children with leukemia or lymphoma. * Bortezomib has been approved by the FDA for treating adults with a cancer called multiple myeloma and adults with relapsed mantle cell lymphoma; it has not been approved for treating children. PRIMARY OBJECTIVE: * To estimate the complete remission (CR) rate for patients with T-cell lymphoblastic leukemia and lymphoma in first relapse. SECONDARY OBJECTIVES: * To evaluate minimal residual disease (MRD) levels at end of each block of therapy. * To describe the toxicities of vincristine sulfate liposome injection (VSLI) when used in combination with chemotherapy and bortezomib.
This randomized phase III trial compares how well combination chemotherapy works when given with or without bortezomib in treating patients with newly diagnosed T-cell acute lymphoblastic leukemia or stage II-IV T-cell lymphoblastic lymphoma. Bortezomib may help reduce the number of leukemia or lymphoma cells by blocking some of the enzymes needed for cell growth. It may also help chemotherapy work better by making cancer cells more sensitive to the drugs. It is not yet known if giving standard chemotherapy with or without bortezomib is more effective in treating newly diagnosed T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma.
The purpose of this study is to identify a safe and tolerable dose of BMS-906024, either alone or in combination with Dexamethasone in subjects with T-cell acute lymphoblastic leukemia or T-cell lymphoblastic lymphoma who no longer respond to or have relapsed from standard therapies
This phase II trial studies the side effects and how well combination chemotherapy and nelarabine work in treating patients with T-cell acute lymphoblastic leukemia or lymphoblastic lymphoma. Drugs used in chemotherapy, such as cyclophosphamide, vincristine, doxorubicin, dexamethasone, methotrexate, cytarabine, mercaptopurine, prednisone, pegaspargase, nelarabine, and venetoclax work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
This randomized phase III trial is studying different combination chemotherapy regimens and their side effects and comparing how well they work in treating young patients with newly diagnosed T-cell acute lymphoblastic leukemia or T-cell lymphoblastic lymphoma. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. It is not yet known which combination chemotherapy regimen is more effective in treating T-cell acute lymphoblastic leukemia or T-cell lymphoblastic lymphoma. After a common induction therapy, patients were risk assigned and eligible for one or both post-induction randomizations: Escalating dose Methotrexate versus High Dose Methotrexate in Interim Maintenance therapy, No Nelarabine versus Nelarabine in Consolidation therapy. T-ALL patients are risk assigned as Low Risk, Intermediate Risk or High Risk. Low Risk patients are not eligible for the Nelarabine randomization, Patients with CNS disease at diagnosis were assgined to receive High Dose Methotrexate, patients who failed induction therapy were assigned to receive Nelarabine and High Dose Methotrexate. T-LLy patients were all assigned to escalating dose Methotrexate and were risk assigned as Standard Risk, High Risk and induction failures. Standard risk patients did not receive nelarabine, High risk T-LLy patients were randomized to No Nelarabine versus Nelarabine, and Induction failures were assigned to receive Nelarabine.
RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. PURPOSE: Clinical trial to study the effectiveness of 506U78 in treating patients who have relapsed or refractory T-cell acute lymphoblastic leukemia or T-cell lymphoblastic lymphoma.
The addition of ponatinib to mini-hyper-CVD chemotherapy and venetoclax will improve the complete remission rate in patients with relapsed or refractory T-cell acute lymphoblastic leukemia
This phase II trial studies how well OBI-3424 works in treating patients with T-cell acute lymphoblastic leukemia that has come back (relapsed) or does not response to treatment (refractory). Drugs used in chemotherapy, such as OBI-3424, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. OBI-3424 may reduce the amount of leukemia in the body.
This phase I/II trial studies the side effects and best dose of venetoclax and how well it works in combination with low-intensity chemotherapy in patients with B- or T-cell acute lymphoblastic leukemia that has not responded to treatment or that has come back. Venetoclax may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, including vincristine, cyclophosphamide, dexamethasone, rituximab, methotrexate, and cytarabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving venetoclax with low-intensity chemotherapy may work better in treating patient with B- or T-cell acute lymphoblastic leukemia.
This study will provide long-term follow-up for patients who have received treatment with WU-CART-007 in a previous clinical trial. In this study, patients will be followed for up to 15 years after their last dose of WU-CART-007 for evaluation of delayed adverse events, presence of persisting WU-CART-007 vector sequences, and overall survival and progression-free survival.
Background: Blood cancers (such as leukemias) can be hard to treat, especially if they have mutations in the TP53 or RAS genes. These mutations can cause the cancer cells to create substances called neoepitopes. Researchers want to test a method of treating blood cancers by altering a person s T cells (a type of immune cell) to target neoepitopes. Objective: To test the use of neoepitope-specific T cells in people with blood cancers Eligibility: People aged 18 to 75 years with any of 9 blood cancers. Design: Participants will have a bone marrow biopsy: A sample of soft tissue will be removed from inside a pelvic bone. This is needed to confirm their diagnosis and the TP53 and RAS mutations in their cancer cells. They will also have a skin biopsy to look for these mutations in other tissue. Participants will undergo apheresis: Blood will be taken from their body through a vein. The blood will pass through a machine that separates out the T cells. The remaining blood will be returned to the body through a different vein. The T cells will be grown to become neoepitope-specific T cells. Participants receive drugs for 3 days to prepare their body for the treatment. The modified T cells will be given through a tube inserted into a vein. Participants will need to remain in the clinic at least 7 days after treatment. Participants will have 8 follow-up visits in the first year after treatment. They will have 6 more visits over the next 4 years. Long-term follow-up will go on for 10 more years.
This study involves Vyxeos (CPX-351), a formulation of a fixed combination of the two anti-tumor drugs, cytarabine and daunorubicin that will be given as an infusion over 90 minutes. This study will use what is called a "liposome" injection. This is a special fat capsule (called a liposome) that surrounds the cytarabine and daunorubicin and protects the drugs from being eliminated/destroyed by the body.
Patients eligible for this study have a type of blood cancer called T-cell leukemia or lymphoma (lymph gland cancer). The body has different ways of fighting infection and disease. This study combines two different ways of fighting disease with antibodies and T cells. Antibodies are types of proteins that protect the body from bacterial and other diseases. T cells, or T lymphocytes, are special infection-fighting blood cells that can kill other cells including tumor cells. Both antibodies and T cells have been used to treat cancer; they have shown promise, but have not been strong enough to cure most patients. T cells can kill tumor cells but there normally are not enough of them to kill all the tumor cells. Some researchers have taken T cells from a person's blood, grown more of them in the laboratory and then given them back to the person. The antibody used in this study is called anti-CD7. This antibody sticks to T-cell leukemia or lymphoma cells because of a substance on the outside of these cells called CD7. CD7 antibodies have been used to treat people with T-cell leukemia and lymphoma. For this study, anti-CD7 has been changed so that instead of floating free in the blood it is now joined to the T cells. When an antibody is joined to a T cell in this way it is called a chimeric receptor. In the laboratory, investigators have also found that T cells work better if they also add proteins that stimulate T cells, such as one called CD28. Adding the CD28 makes the cells grow better and last longer in the body, thus giving the cells a better chance of killing the leukemia or lymphoma cells. In this study, investigators attach the CD7 chimeric receptor with CD28 added to it to T cells. Investigators will then test how long the cells last. These CD7 chimeric receptor T cells with CD28 are investigational products not approved by the Food and Drug Administration.
Patients eligible for this study have a type of blood cancer called T-cell leukemia or lymphoma (lymph gland cancer). The body has different ways of fighting infection and disease. No one way seems perfect for fighting cancers. This research combines two different ways of fighting disease, antibodies and T cells. Antibodies are proteins that protect the body from bacterial and other diseases. T cells, or T lymphocytes, are special infection-fighting blood cells that can kill other cells including tumor cells. Both antibodies and T cells have shown promise treating patients with cancers, but have not been strong enough to cure most patients. T lymphocytes can kill tumor cells but there normally are not enough of them. Some researchers have taken T cells from a person's blood, grown more in the lab then given them back to the person. In some patients who've had recent bone marrow or stem cell transplant, the number of T cells in their blood may not be enough to grow in the lab. In this case, T cells may be collected from their previous transplant donor, who has a similar tissue type. The antibody used in this study, called anti-CD5, first came from mice that have developed immunity to human leukemia. This antibody sticks to T-cell leukemia or lymphoma cells because of a substance on the outside of these cells called CD5. CD5 antibodies have been used to treat people with T-cell leukemia and lymphoma. For this study, anti-CD5 has been changed so that instead of floating free in the blood it is now joined to the T cells. When an antibody is joined to a T cell in this way it is called a chimeric receptor. In the lab, investigators have also found that T cells work better if stimulating proteins, such as one called CD28, are also added. Adding the CD28 makes the cells grow better and last longer in the body, giving them a better chance of killing the leukemia or lymphoma cells. In this study investigators will attach the CD5 chimeric receptor with CD28 added to it to the patient's T cells or the previous bone marrow transplant donor's T cells. The investigators will then test how long the cells last. The decision to use the bone marrow transplant donor's T cells instead of the patient's will be based on 1) whether there is an available and willing donor and 2) the likelihood of the patient's T cells being able to grow in the lab. These CD5 chimeric receptor T cells with CD28 are investigational products not approved by the FDA.
Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Combining more than one drug may kill more cancer cells. This phase II trial is studying several different combination chemotherapy regimens to see how well they work in treating patients with newly diagnosed acute lymphoblastic leukemia
This research study is evaluating a combination of drugs considered standard treatment for children and young adults with acute lymphoblastic leukemia (ALL), in combination with a new drug called MLN 9708. Additionally, the study is also evaluating if bone marrow or stem cell transplantation, which will be given to some participants, helps to prevent ALL from returning.
This phase I trial studies the side effects and best dose of CPI-613 when given together with bendamustine hydrochloride in treating patients with relapsed or refractory T-cell non-Hodgkin lymphoma or Hodgkin lymphoma. CPI-613 may kill cancer cells by turning off their mitochondria, which are used by cancer cells to produce energy and are the building blocks needed to make more cancer cells. By shutting off mitochondria, CPI-613 may deprive the cancer cells of energy and other supplies needed to survive and grow. Drugs used in chemotherapy, such as bendamustine hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving CPI-613 with bendamustine hydrochloride may kill more cancer cells.
This phase II clinical trial studies how well Akt inhibitor MK2206 works in treating patients with relapsed lymphoma. Akt inhibitor MK2206 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
RATIONALE: Giving chemotherapy before a donor umbilical cord blood transplant (UCBT) helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the stem cells from an unrelated donor, that do not exactly match the patient's blood, are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving antithymocyte globulin before transplant and cyclosporine and mycophenolate mofetil after transplant may stop this from happening. PURPOSE: This phase II trial is studying how well donor umbilical cord blood stem cell transplant works in treating patients with hematologic malignancies.
This phase I/II clinical trial is studying the side effects and best dose of gamma-secretase inhibitor RO4929097 and to see how well it works in treating young patients with relapsed or refractory solid tumors, CNS tumors, lymphoma, or T-cell leukemia. Gamma-secretase inhibitor RO4929097 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase I/II trial studies the side effects and best dose of panobinostat and everolimus when given together and to see how well they work in treating patients with multiple myeloma, non-Hodgkin lymphoma, or Hodgkin lymphoma that has come back. Panobinostat and everolimus may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This pilot, phase II trial studies the side effects of giving bortezomib together with combination chemotherapy and to see how well it works in treating young patients with relapsed acute lymphoblastic leukemia or lymphoblastic lymphoma. Bortezomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving bortezomib together with combination chemotherapy may kill more cancer cells.