96 Clinical Trials for Various Conditions
This phase II trial tests whether ruxolitinib works to shrink tumors in patients with T-cell large granular lymphocyte leukemia. Ruxolitinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
An open label, ascending dose study for adult subjects with T-cell Large Granular Lymphocytic Leukemia (T-LGLL)
This phase I/II trial studies the best dose, possible benefits and/or side effects of oral azacitidine in treating patients with T-cell large granular lymphocytic leukemia that has come back (relapsed) or has not responded to previous treatment (refractory). Chemotherapy drugs, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
The goal of this clinical research study is to determine the effectiveness of alemtuzumab in patients with aplastic anemia, MDS, or T-Cell large granular lymphocytic leukemia. The safety of alemtuzumab will also be studied.
This study will examine the use of the humanized Mik-beta-1 (Hu-Mik-beta1) antibody in patients with T-cell large granular lymphocytic leukemia (T-LGL). Patients with T-LGL often have reduced white blood cells, red blood cells, and platelets, and increased numbers of abnormal cells called large granular lymphocytes (LGLs). Patients may have recurrent infections, anemia, or abnormal bleeding. Hu-Mik-beta1 attaches to LGL cells and blocks the action of growth factors called interleukins that stimulate LGL growth. Blocking these interleukins may stop T-LGL leukemia cells from growing. This study will determine the dose and frequency of treatment with Hu-Mik-(SqrRoot) 1 that can safely be given to patients to coat the surface of their leukemic cells with antibody, determine how long the antibody lasts in the blood after injection, and examine the side effects and possible benefits of the drug in these patients. Patients age 18 or older with T-LGL may be eligible for this study. Candidates will be screened with a medical history and physical examination, review of pathology studies, skin biopsy, evaluation of rheumatoid arthritis if present, chest x-ray, computerized tomography (CT) scans and other imaging studies as needed, bone marrow biopsy, and blood and urine tests. Participants will receive a single dose of Hu-Mik-beta1 by a 90-minute infusion through a vein. Groups of patients will be treated with increasing doses (0.5, 1.0, and 1.5 mg/kg) of the antibody. Patients who develop serious drug side effects are taken off the study. The treatment requires a 3- to 4-day hospital stay. In addition to Hu-Mik-(SqrRoot) 1 treatment, patients will undergo the following tests and procedures: * Collection of blood for 8 days following the dose of Hu-Mik-beta1 to measure blood levels of the antibody. * Follow-up visits of 1 to 2 days at 22, 29, and 43 days after the dose of the antibody and then every 3 months for a total of 9 months. * Bone marrow aspirate and biopsy if one has not been done within 6 weeks before entering the study, and a repeat biopsy if complete remission of T-LGL is achieved after completing treatment. For the biopsy, an area of the hip is numbed and a special needle is used to draw bone marrow from the hipbone. * Imaging studies, such as chest x-ray and CT scan of the body after completing treatment if the screening scans showed abnormalities due to the T-LGL leukemia. * Lymph node biopsy in individuals with enlarged superficial lymph nodes due to T-LGL leukemia to see if the treatment is reaching the leukemia in the lymph nodes. There may or may not be a direct benefit from participating in this study. However, the results may help in the treatment of future patients.
The purpose of this registry study is to create a database-a collection of information-for better understanding T-cell lymphoma. Researchers will use the information from this database to learn more about how to improve outcomes for people with T-cell lymphoma.
This is a multicenter, first-in-human, Phase 1/2 study to evaluate the safety, tolerability, pharmacokinetics, pharmacodynamics, and anti-tumor activity of DR-01 in adult patients with large granular lymphocytic leukemia or cytotoxic lymphomas
This Phase 1a/1b study will evaluate the safety, tolerability and the pharmacokinetics/pharmacodynamics (PK/PD) of KT-333 in Adult patients with Relapsed or Refractory (R/R) Lymphomas, Large Granular Lymphocytic Leukemia (LGL-L), T-cell prolymphocytic leukemia (T-PLL), and Solid Tumors. The Phase 1a stage of the study will explore escalating doses of single-agent KT-333. The Phase Ib stage will consist of 4 expansion cohorts to further characterize the safety, tolerability and the pharmacokinetics/pharmacodynamics (PK/PD) of KT-333 in Peripheral T-cell Lymphoma (PTCL), Cutaneous T-Cell Lymphoma (CTCL), LGL-L, and solid tumors.
This phase II trial studies how well giving lenalidomide with or without rituximab works in treating patients with progressive or relapsed chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL), prolymphocytic leukemia (PLL), or non-Hodgkin lymphoma (NHL). Biological therapies, such as lenalidomide, may stimulate the immune system in different ways and stop cancer cells from growing. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Giving lenalidomide together with or without rituximab may kill more cancer cells.
This phase II trial studies how well fludarabine phosphate with radiation therapy and rituximab followed by donor stem cell infusions work in treating patients with high-risk chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL) with low side effects. Nonmyeloablative stem cell transplants use low doses of chemotherapy (fludarabine phosphate) and radiation to suppress the patient's immune system enough to prevent rejection of the donor's stem cells. Following infusion of donor stem cells, a mixture of the patient's and the donor's stem cells will exist and is called "mixed chimerism". Donor cells will attack the patient's leukemia. This is called the "graft-versus-leukemia" effect. Rituximab will be given 3 days before and three times after infusing stem cells to help in controlling CLL early after transplant till the "graft-versus-leukemia" takes control. Further, rituximab could augment the "graft-versus-leukemia" effect by activating donor immune cells and hence improve disease control. Sometimes the transplanted cells from a donor can also attack the body's normal cells. Giving cyclosporine and mycophenolate mofetil after the transplant may stop this from happening.
RATIONALE: Monoclonal antibodies can locate cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells. PURPOSE: Phase I trial to study the effectiveness of monoclonal antibody therapy in treating patients who have chronic lymphocytic leukemia.
RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Combining more than one drug may kill more cancer cells. PURPOSE: Phase I trial to study the effectiveness of bryostatin 1 plus fludarabine in treating patients who have chronic lymphocytic leukemia or relapsed, indolent non-Hodgkin's lymphoma.
RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. PURPOSE: Phase II trial to study the effectiveness of methotrexate with or without cyclophosphamide in treating patients who have lymphocytic leukemia with neutropenia or anemia.
RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. PURPOSE: Phase II trial to study the effectiveness of 506U78 in treating patients with chronic lymphocytic leukemia that has not responded to fludarabine or alkylating agents.
This phase I trial studies the side effects and the best dose of alisertib when given together with vorinostat in treating patients with Hodgkin lymphoma, B-cell non-Hodgkin lymphoma, or peripheral T-cell lymphoma that has come back. Alisertib and vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This clinical trial studies etoposide, filgrastim and plerixafor in improving stem cell mobilization in patients with non-Hodgkin lymphoma. Giving colony-stimulating factors, such as filgrastim, and plerixafor and etoposide together helps stem cells move from the patient's bone marrow to the blood so they can be collected and stored.
The purpose of this research study is to compare the survival rates of patients with better risk disease undergoing hematopoietic stem cell transplant (HSCT) to the survival rates reported in the medical literature of similar patients undergoing reduced intensity HSCT from matched related donors.
This phase II trial is studying how well tipifarnib works in treating patients with anemia or neutropenia and large granular lymphocyte leukemia. Tipifarnib may stop the growth of leukemia by blocking blood flow to the cancer cells and by blocking some of the enzymes needed for cancer cell growth.
This pilot phase II trial studies how well giving donor T cells after donor stem cell transplant works in treating patients with hematologic malignancies. In a donor stem cell transplant, the donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor's T cells (donor lymphocyte infusion) after the transplant may help increase this effect.
This study will determine the safety and applicability of experimental forms of umbilical cord blood (UCB) transplantation for patients with high risk hematologic malignancies who might benefit from a hematopoietic stem cell transplant (HSCT) but who do not have a standard donor option (no available HLA-matched related donor (MRD), HLA-matched unrelated donor (MUD)), or single UCB unit with adequate cell number and HLA-match).
This phase II trial studies how well giving fludarabine phosphate, melphalan, and low-dose total-body irradiation (TBI) followed by donor peripheral blood stem cell transplant (PBSCT) works in treating patients with hematologic malignancies. Giving chemotherapy drugs such as fludarabine phosphate and melphalan, and low-dose TBI before a donor PBSCT helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from the donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cell from a donor can make an immune response against the body's normal cells. Giving tacrolimus, mycophenolate mofetil (MMF), and methotrexate after transplant may stop this from happening
This phase II clinical trial studies how well Akt inhibitor MK2206 works in treating patients with relapsed lymphoma. Akt inhibitor MK2206 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase I clinical trial is studying the side effects and the best dose of lenalidomide after donor bone marrow transplant in treating patients with high-risk hematologic cancer. Biological therapies, such as lenalidomide, may stimulate the immune system in different ways and stop cancer cells from growing.
RATIONALE: Giving chemotherapy before a donor umbilical cord blood transplant (UCBT) helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the stem cells from an unrelated donor, that do not exactly match the patient's blood, are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving antithymocyte globulin before transplant and cyclosporine and mycophenolate mofetil after transplant may stop this from happening. PURPOSE: This phase II trial is studying how well donor umbilical cord blood stem cell transplant works in treating patients with hematologic malignancies.
This study is collecting and storing malignant, borderline malignant neoplasms, and related biological samples from young patients with cancer. Collecting and storing samples of tumor tissue, blood, and bone marrow from patients with cancer to study in the laboratory may help the study of cancer in the future.
This phase II trial is studying how well sunitinib works in treating patients with idiopathic myelofibrosis. Sunitinib may stop the growth of abnormal cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the abnormal cells.
This phase I trial is studying the side effects and best dose of oxaliplatin and etoposide in treating young patients with recurrent or refractory solid tumors or lymphomas. Drugs used in chemotherapy, such as oxaliplatin and etoposide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Oxaliplatin may also help etoposide work better by making cancer cells more sensitive to the drug. Giving oxaliplatin together with etoposide may kill more cancer cells.
Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Phase I trial to study the effectiveness of imatinib mesylate in treating patients who have advanced cancer and liver dysfunction
This clinical trial studies fludarabine phosphate and total-body radiation followed by donor peripheral blood stem cell transplant and immunosuppression in treating patients with hematologic malignancies. Giving chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving total-body irradiation together with fludarabine phosphate, cyclosporine, and mycophenolate mofetil before transplant may stop this from happening.
This clinical trial studies fludarabine phosphate, low-dose total-body irradiation, and donor stem cell transplant followed by cyclosporine, mycophenolate mofetil, and donor lymphocyte infusion in treating patients with hematopoietic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate, and total body irradiation (TBI) before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also keep the patient's immune response from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor's T cells (donor lymphocyte infusion) after the transplant may help increase this effect. Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil after the transplant may stop this from happening.