Treatment Trials

490 Clinical Trials for Various Conditions

Focus your search

RECRUITING
Targeted Immunotherapy After Myeloablative TBI-Based Conditioning & AlloHCT in CAYA With High Risk T-Cell ALL & Lymphoma
Description

A Phase I trial to determine the safety of targeted immunotherapy with daratumumab (DARA) IV after total body irradiation (TBI)-based myeloablative conditioning and allogeneic hematopoietic cell transplantation (HCT) for children, adolescents, and young adults (CAYA) with high risk T-cell acute lymphoblastic leukemia (T-ALL) or T-cell lymphoblastic lymphoma (T-LLy). Pre- and post-HCT NGS-MRD studies will be correlated with outcomes in children, adolescents, and young adults with T-ALL undergoing allogeneic HCT and post-HCT DARA treatment. The study will also evaluate T-cell repertoire and immune reconstitution prior to and following DARA post-HCT treatment and correlate with patient outcomes.

ACTIVE_NOT_RECRUITING
A Study Evaluating the Safety and Efficacy of BEAM-201 in Relapsed/Refractory T-Cell Acute Lymphoblastic Leukemia (T-ALL) or T-Cell Lymphoblastic Lymphoma (T-LL)
Description

This is a Phase 1/2, multicenter, open-label study to evaluate the safety and efficacy of BEAM-201 in patients with relapsed/refractory T-ALL or T-LL. This study consists of Phase 1 dose-exploration cohorts, Phase 1 dose-expansion cohort(s), a Phase 1 pediatric cohort (will enroll patients ages 1 to \< 12 years), and a Phase 2 cohort.

RECRUITING
Anti-CD7 CAR-T Cells in Relapsed/Refractory T-Cell Acute Lymphoblastic Leukemia or Lymphoma
Description

This will be a Phase 1, open-label study to evaluate the safety and efficacy of BEAM-201 in patients with R/R T-ALL or T-LLy. BEAM-201 is an allogeneic anti-CD7 CART therapy.

TERMINATED
Re-Induction Therapy for Relapsed Pediatric T-Cell Acute Lymphoblastic Leukemia or Lymphoma
Description

This is a phase-II study to evaluate the efficacy of a salvage regimen in children with relapsed T-cell ALL or lymphoma. Peg-asparaginase, mitoxantrone, intrathecal triples (IT) (intrathecal methotrexate/hydrocortisone/cytarabine) (ITMHA) and dexamethasone are commonly used drugs to treat relapsed or refractory acute lymphocytic leukemia or lymphoma (ALL). In this study, the investigators want to know if adding three drugs called panobinostat, bortezomib and liposomal vincristine (VSLI) to this regimen will result in remission (no signs or symptoms of leukemia or lymphoma). * Panobinostat has been approved by the FDA for treating adults with multiple myeloma, but it has not been approved for use in children and has not been given together with the other drugs used in this study. It has not been widely studied in children. * VSLI has been approved by the FDA for adults with relapsed or refractory ALL, but has not yet been approved for treating children with leukemia or lymphoma. * Bortezomib has been approved by the FDA for treating adults with a cancer called multiple myeloma and adults with relapsed mantle cell lymphoma; it has not been approved for treating children. PRIMARY OBJECTIVE: * To estimate the complete remission (CR) rate for patients with T-cell lymphoblastic leukemia and lymphoma in first relapse. SECONDARY OBJECTIVES: * To evaluate minimal residual disease (MRD) levels at end of each block of therapy. * To describe the toxicities of vincristine sulfate liposome injection (VSLI) when used in combination with chemotherapy and bortezomib.

ACTIVE_NOT_RECRUITING
A Phase 2 Study of WU-CART-007, an Anti-CD7 Allogeneic CAR-T Cell Therapy in T-Cell Acute Lymphoblastic Leukemia and Lymphoblastic Lymphoma
Description

The main purpose of this study is to evaluate the Composite Complete Remission Rate (CRc) of WU-CART-007 in Relapsed/Refractory (R/R) T-Cell Acute Lymphoblastic Leukemia (T-ALL)/Lymphoblastic Lymphoma (LBL) patients and to evaluate the efficacy of WU-CART-007 to induce complete Minimum Residual Disease (MRD) negative response

RECRUITING
Adding Dasatinib Or Venetoclax To Improve Responses In Children With Newly Diagnosed T-Cell Acute Lymphoblastic Leukemia (ALL) Or Lymphoma (T-LLY) Or Mixed Phenotype Acute Leukemia (MPAL)
Description

This is a clinical trial testing whether the addition of one of two chemotherapy agents, dasatinib or venetoclax, can improve outcomes for children and young adults with newly diagnosed T-cell acute lymphoblastic leukemia and lymphoma or mixed phenotype acute leukemia. Primary Objective * To evaluate if the end of induction MRD-negative rate is higher in patients with T-ALL treated with dasatinib compared to similar patients treated with 4-drug induction on AALL1231. * To evaluate if the end of induction MRD-negative rate is higher in patients with ETP or near-ETP ALL treated with venetoclax compared to similar patients treated with 4-drug induction on AALL1231. Secondary Objectives * To assess the event free and overall survival of patients treated with this therapy. * To compare grade 4 toxicities, event-free survival (EFS) and overall survival (OS) of patients treated with this therapy in induction and reinduction to toxicities of similar patients treated on TOT17.

COMPLETED
A Study to Evaluate the Efficacy and Safety of Daratumumab in Pediatric and Young Adult Participants Greater Than or Equal to (>=)1 and Less Than or Equal to (<=) 30 Years of Age With Relapsed/Refractory Precursor B-cell or T-cell Acute Lymphoblastic Leukemia or Lymphoblastic Lymphoma
Description

The purpose of this study is to evaluate the efficacy of daratumumab in addition to standard chemotherapy in pediatric participants with relapsed/refractory B-cell acute lymphoblastic leukemia (ALL)/lymphoblastic lymphoma (LL) and T-cell ALL/LL as measured by the complete response (CR) rate.

RECRUITING
Combination Chemotherapy and Nelarabine in Treating Patients with T-cell Acute Lymphoblastic Leukemia or Lymphoblastic Lymphoma
Description

This phase II trial studies the side effects and how well combination chemotherapy and nelarabine work in treating patients with T-cell acute lymphoblastic leukemia or lymphoblastic lymphoma. Drugs used in chemotherapy, such as cyclophosphamide, vincristine, doxorubicin, dexamethasone, methotrexate, cytarabine, mercaptopurine, prednisone, pegaspargase, nelarabine, and venetoclax work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.

RECRUITING
Kappa-CD28 T Lymphocytes, Chronic Lymphocytic Leukemia, B-cell Lymphoma or Multiple Myeloma, CHARKALL
Description

Patients have a type of cancer called NHL, Multiple Myeloma (MM) or CLL that has come back or has not gone away after treatment. There is no standard treatment for the cancer at this time or the currently used treatments do not work completely in all cases like these. This is a gene transfer research study using special immune cells. The body has different ways of fighting infection and disease. No single way seems perfect for fighting cancers. This research study combines two different ways of fighting disease, antibodies and T cells, that investigators hope will work together. Antibodies are types of proteins that protect the body from bacterial and other diseases. T cells, also called T lymphocytes, are special infection-fighting blood cells that can kill other cells, including tumor cells. Both antibodies and T cells have been used to treat patients with cancers; they have shown promise, but have not been strong enough to cure most patients. The antibody used in this study recognizes a protein on the lymphoma, MM or CLL cells called kappa immunoglobulin. Antibodies can stick to lymphoma, MM or CLL cells when it recognizes the kappa molecules present on the tumor cells. For this study, the kappa antibody has been changed so that instead of floating free in the blood it is now joined to the T cells. When an antibody is joined to a T cell in this way it is called a chimeric receptor. These chimeric receptor-T cells seem to kill some of the tumor, but they don't last very long and so their chances of fighting the cancer are limited. In the laboratory, investigators found that T cells work better if they also add a protein that stimulates T cells to grow called CD28. By joining the anti-kappa antibody to the T cells and adding the CD28, the investigators expect to be able to make cells that will last for a longer time in the body (because of the presence of the CD28). They are hoping this will make the cells work better. Previously, when patients enrolled on this study, they were assigned to one of three different doses of the kappa-CD28 T cells. We found that all three dose levels are safe. Now, the plan is to give patients the highest dose that we tested. These chimeric T cells (kappa-CD28) are an investigational product not approved by the FDA.

COMPLETED
Study to Evaluate the Safety and Tolerability of Weekly Intravenous (IV) Doses of BMS-906024 in Subjects With Acute T-cell Lymphoblastic Leukemia or T-cell Lymphoblastic Lymphoma
Description

The purpose of this study is to identify a safe and tolerable dose of BMS-906024, either alone or in combination with Dexamethasone in subjects with T-cell acute lymphoblastic leukemia or T-cell lymphoblastic lymphoma who no longer respond to or have relapsed from standard therapies

COMPLETED
Combination Chemotherapy in Treating Young Patients With Newly Diagnosed T-Cell Acute Lymphoblastic Leukemia or T-cell Lymphoblastic Lymphoma
Description

This randomized phase III trial is studying different combination chemotherapy regimens and their side effects and comparing how well they work in treating young patients with newly diagnosed T-cell acute lymphoblastic leukemia or T-cell lymphoblastic lymphoma. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. It is not yet known which combination chemotherapy regimen is more effective in treating T-cell acute lymphoblastic leukemia or T-cell lymphoblastic lymphoma. After a common induction therapy, patients were risk assigned and eligible for one or both post-induction randomizations: Escalating dose Methotrexate versus High Dose Methotrexate in Interim Maintenance therapy, No Nelarabine versus Nelarabine in Consolidation therapy. T-ALL patients are risk assigned as Low Risk, Intermediate Risk or High Risk. Low Risk patients are not eligible for the Nelarabine randomization, Patients with CNS disease at diagnosis were assgined to receive High Dose Methotrexate, patients who failed induction therapy were assigned to receive Nelarabine and High Dose Methotrexate. T-LLy patients were all assigned to escalating dose Methotrexate and were risk assigned as Standard Risk, High Risk and induction failures. Standard risk patients did not receive nelarabine, High risk T-LLy patients were randomized to No Nelarabine versus Nelarabine, and Induction failures were assigned to receive Nelarabine.

COMPLETED
506U78 in Treating Patients With Relapsed or Refractory T-cell Acute Lymphoblastic Leukemia or T-cell Lymphoblastic Lymphoma
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. PURPOSE: Clinical trial to study the effectiveness of 506U78 in treating patients who have relapsed or refractory T-cell acute lymphoblastic leukemia or T-cell lymphoblastic lymphoma.

NOT_YET_RECRUITING
A Phase 2 Study to Evaluate Efficacy of Calaspargase Pegol-mknl and Decitabine Combined With Venetoclax in Pediatric, Adolescent, and Young Adult Patients With Relapsed/Refractory T-cell Acute Lymphoblastic Leukemia (T-ALL) and T- Cell Lymphoblastic Lymphoma (T-LLy)
Description

To learn if giving the study drugs calaspargase pegol-mknl and decitabine in combination with venetoclax can help to control relapsed/refractory T-ALL and T-LLy. The safety of this drug combination will also be studied.

TERMINATED
XmAb18968 (CD3-CD38) in Relapsed or Refractory Acute Leukemia and T Cell Lymphoblastic Leukemia
Description

This is a phase 1, dose-escalation study (using 3 + 3 dose-limiting toxicity (DLT) criteria) evaluating the safety and tolerability of XmAb18968, as well as establishing a recommended phase II dose (RP2D) in subjects with T cell acute lymphoblastic leukemia (T-ALL) and T cell lymphoblastic (lymphoma) T-LBL (Group A) and acute myeloid leukemia (AML) (Group B).

COMPLETED
Everolimus in Combination With Nelarabine, Cyclophosphamide and Etoposide in Lymphoblastic Leukemia/Lymphoma
Description

T- cell acute lymphoblastic leukemia (T-ALL) or T-cell lymphoblastic lymphoma (T-LLy) has an increase in proteins in a specific pathway called the mTOR pathway within the cancer cells. In cancer cells it can encourage untimely cell growth, cell production, and cell survival. Everolimus is an inhibitor of the mTOR pathway and can decrease the growth and survival of cancer cells. It also prevents communication within cells and stops proteins from being made that may contribute to leukemia. The main purpose of the study is to find the maximum tolerated dose of everolimus when used together with standard chemotherapy.

ACTIVE_NOT_RECRUITING
Combination Chemotherapy With or Without Bortezomib in Treating Younger Patients With Newly Diagnosed T-Cell Acute Lymphoblastic Leukemia or Stage II-IV T-Cell Lymphoblastic Lymphoma
Description

This randomized phase III trial compares how well combination chemotherapy works when given with or without bortezomib in treating patients with newly diagnosed T-cell acute lymphoblastic leukemia or stage II-IV T-cell lymphoblastic lymphoma. Bortezomib may help reduce the number of leukemia or lymphoma cells by blocking some of the enzymes needed for cell growth. It may also help chemotherapy work better by making cancer cells more sensitive to the drugs. It is not yet known if giving standard chemotherapy with or without bortezomib is more effective in treating newly diagnosed T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma.

TERMINATED
Trial of Nelarabine, Etoposide and Cyclophosphamide in Relapsed T-cell ALL and T-cell LL
Description

Nelarabine has shown significant activity in patients with T-cell malignancies. This study will determine the safety and maximum tolerated dose of the combination of nelarabine, cyclophosphamide and etoposide in patients with first bone marrow relapse of T-ALL, or first relapse of T-LL.

COMPLETED
T-cell Depleted Bone Marrow and G-CSF Stimulated Peripheral Stem Cell Transplantation From Related Donors in Treating Patients With Leukemia, Lymphoblastic Lymphoma, Myelodysplastic Syndrome, or Aplastic Anemia
Description

RATIONALE: Bone marrow and peripheral stem cell transplantation may be able to replace immune cells that were destroyed by chemotherapy or radiation therapy used to kill cancer cells. PURPOSE: Phase II trial to study the effectiveness of T-cell depleted bone marrow and G-CSF stimulated peripheral stem cell transplantation in treating patients with leukemia, lymphoblastic lymphoma, myelodysplastic syndrome, or aplastic anemia.

ENROLLING_BY_INVITATION
A Long-Term Safety Follow-Up Study for Patients Treat With WU-CART-007
Description

This study will provide long-term follow-up for patients who have received treatment with WU-CART-007 in a previous clinical trial. In this study, patients will be followed for up to 15 years after their last dose of WU-CART-007 for evaluation of delayed adverse events, presence of persisting WU-CART-007 vector sequences, and overall survival and progression-free survival.

COMPLETED
Salvia Hispanica Seed in Reducing Risk of Disease Recurrence in Patients With Non-Hodgkin Lymphoma
Description

This pilot clinical trial studies Salvia hispanica seed in reducing the risk of returning disease (recurrence) in patients with non-Hodgkin lymphoma. Functional foods, such as Salvia hispanica seed, has health benefits beyond basic nutrition by reducing disease risk and promoting optimal health. Salvia hispanica seed contains essential poly-unsaturated fatty acids, including omega 3 alpha linoleic acid and omega 6 linoleic acid; it also contains high levels of antioxidants and dietary soluble fiber. Salvia hispanica seed may raise omega-3 levels in the blood and/or change the bacterial populations that live in the digestive system and reduce the risk of disease recurrence in patients with non-Hodgkin lymphoma.

ACTIVE_NOT_RECRUITING
Romidepsin Maintenance After Allogeneic Stem Cell Transplantation
Description

The goal of this clinical research study is to learn if giving romidepsin before and after a stem cell transplant in combination with fludarabine and busulfan can help to control leukemia or lymphoma. Researchers also want to learn the highest tolerable dose of romidepsin that can be given with this combination. The safety of this combination and the safety of giving romidepsin after a stem cell transplant will also be studied. This is an investigational study. Romidepsin is FDA approved and commercially available for the treatment of CTCL in patients who have received at least 1 systemic (affecting the whole body) therapy before. Busulfan and fludarabine are FDA approved and commercially available for use with a stem cell transplant. The use of the combination of romidepsin, busulfan, and fludarabine to treat the type of leukemia or lymphoma you have is considered investigational. Up to 30 participants will be enrolled in this study. All will take part at MD Anderson.

ACTIVE_NOT_RECRUITING
UCB Transplant for Hematological Diseases Using a Non Myeloablative Prep
Description

This is a phase II trial using a non-myeloablative cyclophosphamide/ fludarabine/total body irradiation (TBI) preparative regimen with modifications based on factors including diagnosis, disease status, and prior treatment. Single or double unit selected according to current University of Minnesota umbilical cord blood graft selection algorithm.

RECRUITING
The OPAL Study: AVM0703 for Treatment of Lymphoid Malignancies
Description

This is an open-label, Phase 1/2 study designed to characterize the safety, tolerability, Pharmacokinetics(PK), and preliminary antitumor activity of AVM0703 administered as a single intravenous (IV) infusion to patients with lymphoid malignancies.

NO_LONGER_AVAILABLE
Expanded Access Protocol (EAP) Using the CliniMACS® Device for Pediatric Haplocompatible Donor Stem Cell Transplant
Description

This protocol provides expanded access to bone marrow transplants for children who lack a histocompatible (tissue matched) stem cell or bone marrow donor when an alternative donor (unrelated donor or half-matched related donor) is available to donate. In this procedure, some of the blood forming cells (the stem cells) are collected from the blood of a partially human leukocyte antigen (HLA) matched (haploidentical) donor and are transplanted into the patient (the recipient) after administration of a "conditioning regimen". A conditioning regimen consists of chemotherapy and sometimes radiation to the entire body (total body irradiation, or TBI), which is meant to destroy the cancer cells and suppress the recipient's immune system to allow the transplanted cells to take (grow). A major problem after a transplant from an alternative donor is increased risk of Graft-versus-Host Disease (GVHD), which occurs when donor T cells (white blood cells that are involved with the body's immune response) attack other tissues or organs like the skin, liver and intestines of the transplant recipient. In this study, stem cells that are obtained from a partially-matched donor will be highly purified using the investigational CliniMACS® stem cell selection device in an effort to achieve specific T cell target values. The primary aim of the study is to help improve overall survival with haploidentical stem cell transplant in a high risk patient population by limiting the complication of GVHD.

ACTIVE_NOT_RECRUITING
Total Therapy XVII for Newly Diagnosed Patients With Acute Lymphoblastic Leukemia and Lymphoma
Description

The overarching objective of this study is to use novel precision medicine strategies based on inherited and acquired leukemia-specific genomic features and targeted treatment approaches to improve the cure rate and quality of life of children with acute lymphoblastic leukemia (ALL) and acute lymphoblastic lymphoma (LLy). Primary Therapeutic Objectives: * To improve the event-free survival of provisional standard- or high-risk patients with genetically or immunologically targetable lesions or minimal residual disease (MRD) ≥ 5% at Day 15 or Day 22 or ≥1% at the end of Remission Induction, by the addition of molecular and immunotherapeutic approaches including tyrosine kinase inhibitors or chimeric antigen receptor (CAR) T cell / blinatumomab for refractory B-acute lymphoblastic leukemia (B-ALL) or B-lymphoblastic lymphoma (B-LLy), and the proteasome inhibitor bortezomib for those lacking targetable lesions. * To improve overall treatment outcome of T acute lymphoblastic leukemia (T-ALL) and T-lymphoblastic lymphoma (T-LLy) by optimizing pegaspargase and cyclophosphamide treatment and by the addition of new agents in patients with targetable genomic abnormalities (e.g., activated tyrosine kinases or JAK/STAT mutations) or by the addition of bortezomib for those who have a poor early response to treatment but no targetable lesions, and by administering nelarabine to T-ALL and T-LLy patients with leukemia/lymphoma cells in cerebrospinal fluid at diagnosis or MRD ≥0.01% at the end of induction. * To determine in a randomized study design whether the incidence and/or severity of acute vincristine-induced peripheral neuropathy can be reduced by decreasing the dosage of vincristine in patients with the high-risk CEP72 TT genotype or by shortening the duration of vincristine therapy in standard/high-risk patients with the CEP72 CC or CT genotype. Secondary Therapeutic Objectives: * To estimate the event-free survival and overall survival of children with ALL and to assess the non-inferiority of TOTXVII compared to the historical control given by TOTXVI. * To estimate the event-free survival and overall survival of children with LLy when ALL diagnostic and treatment approaches are used. * To evaluate the efficacy of blinatumomab in B-ALL patients with end of induction MRD ≥0.01% to \<1% and those (regardless of MRD level or TOTXVII risk category) with the genetic subtypes of BCR-ABL1, ABL-class fusion, JAK-STAT activating mutation, hypodiploid, iAMP21, ETV6-RUNX1-like, MEF2D, TCF3-HLF, or BCL2/MYC or with Down syndrome, by comparing event-free survival to historical control from TOTXVI. * To determine the tolerability of combination therapy with ruxolitinib and Early Intensification therapy in patients with activation of JAK-STAT signaling that can be inhibited by ruxolitinib and Day 15 or Day 22 MRD ≥5%, Day 42 MRD ≥1%, or LLy patients without complete response at the End of Induction and all patients with early T cell precursor leukemia. Biological Objectives: * To use data from clinical genomic sequencing of diagnosis, germline/remission and MRD samples to guide therapy, including incorporation of targeted agents and institution of genetic counseling and cancer surveillance. * To evaluate and implement deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) sequencing-based methods to monitor levels of MRD in bone marrow, blood, and cerebrospinal fluid. * To assess clonal diversity and evolution of pre-leukemic and leukemic populations using DNA variant detection and single-cell genomic analyses in a non-clinical, research setting. * To identify germline or somatic genomic variants associated with drug resistance of ALL cells to conventional and newer targeted anti-leukemic agents in a non-clinical, research setting. * To compare drug sensitivity of ALL cells from diagnosis to relapse in vitro and in vivo and determine if acquired resistance to specific agents is related to specific somatic genome variants that are not detected or found in only a minor clone at initial diagnosis. Supportive Care Objectives * To conduct serial neurocognitive monitoring of patients to investigate the neurocognitive trajectory, mechanisms, and risk factors. * To evaluate the impact of low-magnitude high frequency mechanical stimulation on bone mineral density and markers of bone turnover. There are several Exploratory Objectives.

COMPLETED
CPI-613 and Bendamustine Hydrochloride in Treating Patients With Relapsed or Refractory T-Cell Non-Hodgkin Lymphoma or Hodgkin Lymphoma
Description

This phase I trial studies the side effects and best dose of CPI-613 when given together with bendamustine hydrochloride in treating patients with relapsed or refractory T-cell non-Hodgkin lymphoma or Hodgkin lymphoma. CPI-613 may kill cancer cells by turning off their mitochondria, which are used by cancer cells to produce energy and are the building blocks needed to make more cancer cells. By shutting off mitochondria, CPI-613 may deprive the cancer cells of energy and other supplies needed to survive and grow. Drugs used in chemotherapy, such as bendamustine hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving CPI-613 with bendamustine hydrochloride may kill more cancer cells.

COMPLETED
Study of Akt Inhibitor MK2206 in Patients With Relapsed Lymphoma
Description

This phase II clinical trial studies how well Akt inhibitor MK2206 works in treating patients with relapsed lymphoma. Akt inhibitor MK2206 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

COMPLETED
AR-42 in Treating Patients With Advanced or Relapsed Multiple Myeloma, Chronic Lymphocytic Leukemia, or Lymphoma
Description

RATIONALE: AR-42 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase I trial is studying the side effects and best dose of AR-42 in treating patients with advanced or relapsed multiple myeloma, chronic lymphocytic leukemia, or lymphoma.

Conditions
Adult Nasal Type Extranodal NK/T-cell LymphomaAnaplastic Large Cell LymphomaAngioimmunoblastic T-cell LymphomaCutaneous B-cell Non-Hodgkin LymphomaExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueHepatosplenic T-cell LymphomaIntraocular LymphomaNodal Marginal Zone B-cell LymphomaPeripheral T-cell LymphomaPost-transplant Lymphoproliferative DisorderProlymphocytic LeukemiaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Grade III Lymphomatoid GranulomatosisRecurrent Adult Hodgkin LymphomaRecurrent Adult Immunoblastic Large Cell LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Adult T-cell Leukemia/LymphomaRecurrent Cutaneous T-cell Non-Hodgkin LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Mycosis Fungoides/Sezary SyndromeRecurrent Small Lymphocytic LymphomaRefractory Chronic Lymphocytic LeukemiaRefractory Multiple MyelomaStage III Adult Burkitt LymphomaStage III Adult Diffuse Large Cell LymphomaStage III Adult Diffuse Mixed Cell LymphomaStage III Adult Diffuse Small Cleaved Cell LymphomaStage III Adult Hodgkin LymphomaStage III Adult Immunoblastic Large Cell LymphomaStage III Adult Lymphoblastic LymphomaStage III Adult T-cell Leukemia/LymphomaStage III Chronic Lymphocytic LeukemiaStage III Cutaneous T-cell Non-Hodgkin LymphomaStage III Grade 1 Follicular LymphomaStage III Grade 2 Follicular LymphomaStage III Grade 3 Follicular LymphomaStage III Mantle Cell LymphomaStage III Marginal Zone LymphomaStage III Multiple MyelomaStage III Mycosis Fungoides/Sezary SyndromeStage III Small Lymphocytic LymphomaStage IV Adult Burkitt LymphomaStage IV Adult Diffuse Large Cell LymphomaStage IV Adult Diffuse Mixed Cell LymphomaStage IV Adult Diffuse Small Cleaved Cell LymphomaStage IV Adult Hodgkin LymphomaStage IV Adult Immunoblastic Large Cell LymphomaStage IV Adult Lymphoblastic LymphomaStage IV Adult T-cell Leukemia/LymphomaStage IV Chronic Lymphocytic LeukemiaStage IV Cutaneous T-cell Non-Hodgkin LymphomaStage IV Grade 1 Follicular LymphomaStage IV Grade 2 Follicular LymphomaStage IV Grade 3 Follicular LymphomaStage IV Mantle Cell LymphomaStage IV Marginal Zone LymphomaStage IV Mycosis Fungoides/Sezary SyndromeStage IV Small Lymphocytic LymphomaTesticular LymphomaWaldenstrom Macroglobulinemia
TERMINATED
Gamma-Secretase Inhibitor RO4929097 in Treating Young Patients With Relapsed or Refractory Solid Tumors, CNS Tumors, Lymphoma, or T-Cell Leukemia
Description

This phase I/II clinical trial is studying the side effects and best dose of gamma-secretase inhibitor RO4929097 and to see how well it works in treating young patients with relapsed or refractory solid tumors, CNS tumors, lymphoma, or T-cell leukemia. Gamma-secretase inhibitor RO4929097 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

Conditions
Childhood Atypical Teratoid/Rhabdoid TumorChildhood Central Nervous System ChoriocarcinomaChildhood Central Nervous System GerminomaChildhood Central Nervous System Mixed Germ Cell TumorChildhood Central Nervous System TeratomaChildhood Central Nervous System Yolk Sac TumorChildhood Choroid Plexus TumorChildhood CraniopharyngiomaChildhood EpendymoblastomaChildhood Grade I MeningiomaChildhood Grade II MeningiomaChildhood Grade III MeningiomaChildhood Infratentorial EpendymomaChildhood MedulloepitheliomaChildhood Mixed GliomaChildhood OligodendrogliomaChildhood Supratentorial EpendymomaGonadotroph AdenomaPituitary Basophilic AdenomaPituitary Chromophobe AdenomaPituitary Eosinophilic AdenomaProlactin Secreting AdenomaRecurrent Childhood Acute Lymphoblastic LeukemiaRecurrent Childhood Anaplastic Large Cell LymphomaRecurrent Childhood Brain Stem GliomaRecurrent Childhood Central Nervous System Embryonal TumorRecurrent Childhood Cerebellar AstrocytomaRecurrent Childhood Cerebral AstrocytomaRecurrent Childhood EpendymomaRecurrent Childhood Grade III Lymphomatoid GranulomatosisRecurrent Childhood Large Cell LymphomaRecurrent Childhood Lymphoblastic LymphomaRecurrent Childhood MedulloblastomaRecurrent Childhood PineoblastomaRecurrent Childhood Small Noncleaved Cell LymphomaRecurrent Childhood Spinal Cord NeoplasmRecurrent Childhood Subependymal Giant Cell AstrocytomaRecurrent Childhood Supratentorial Primitive Neuroectodermal TumorRecurrent Childhood Visual Pathway and Hypothalamic GliomaRecurrent Childhood Visual Pathway GliomaRecurrent Pituitary TumorRecurrent/Refractory Childhood Hodgkin LymphomaT-cell Childhood Acute Lymphoblastic LeukemiaT-cell Large Granular Lymphocyte LeukemiaTSH Secreting AdenomaUnspecified Childhood Solid Tumor, Protocol Specific
COMPLETED
Panobinostat and Everolimus in Treating Patients With Recurrent Multiple Myeloma, Non-Hodgkin Lymphoma, or Hodgkin Lymphoma
Description

This phase I/II trial studies the side effects and best dose of panobinostat and everolimus when given together and to see how well they work in treating patients with multiple myeloma, non-Hodgkin lymphoma, or Hodgkin lymphoma that has come back. Panobinostat and everolimus may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.