Treatment Trials

21 Clinical Trials for Various Conditions

Focus your search

TERMINATED
Study of Forodesine Hydrochloride in Patients With Relapsed/Refractory Precursor T-Lymphoblastic Leukemia/Lymphoma Who Have Failed Two or More Prior Treatment Regimens
Description

The purpose of this study is to determine whether Forodesine Hydrochloride is effective in treating patients with relapsed/refractory precursor T-Lymphoblastic Leukemia/Lymphoma who have failed two or more prior treatment regimens.

COMPLETED
Salvia Hispanica Seed in Reducing Risk of Disease Recurrence in Patients With Non-Hodgkin Lymphoma
Description

This pilot clinical trial studies Salvia hispanica seed in reducing the risk of returning disease (recurrence) in patients with non-Hodgkin lymphoma. Functional foods, such as Salvia hispanica seed, has health benefits beyond basic nutrition by reducing disease risk and promoting optimal health. Salvia hispanica seed contains essential poly-unsaturated fatty acids, including omega 3 alpha linoleic acid and omega 6 linoleic acid; it also contains high levels of antioxidants and dietary soluble fiber. Salvia hispanica seed may raise omega-3 levels in the blood and/or change the bacterial populations that live in the digestive system and reduce the risk of disease recurrence in patients with non-Hodgkin lymphoma.

WITHDRAWN
Etoposide, Prednisone, Vincristine Sulfate, Cyclophosphamide, and Doxorubicin Hydrochloride With Asparaginase in Treating Patients With Acute Lymphoblastic Leukemia or Lymphoblastic Lymphoma
Description

This phase II trial studies how well etoposide, prednisone, vincristine sulfate, cyclophosphamide, and doxorubicin hydrochloride with asparaginase work in treating patients with acute lymphoblastic leukemia or lymphoblastic lymphoma. Drugs used in chemotherapy, such as etoposide, prednisone, vincristine sulfate, cyclophosphamide, and doxorubicin hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Asparaginase breaks down the amino acid asparagine and may block the growth of tumor cells that need asparagine to grow. Giving combination chemotherapy with asparaginase may work better in treating patients with acute lymphoblastic leukemia or lymphoblastic lymphoma.

ACTIVE_NOT_RECRUITING
Romidepsin Maintenance After Allogeneic Stem Cell Transplantation
Description

The goal of this clinical research study is to learn if giving romidepsin before and after a stem cell transplant in combination with fludarabine and busulfan can help to control leukemia or lymphoma. Researchers also want to learn the highest tolerable dose of romidepsin that can be given with this combination. The safety of this combination and the safety of giving romidepsin after a stem cell transplant will also be studied. This is an investigational study. Romidepsin is FDA approved and commercially available for the treatment of CTCL in patients who have received at least 1 systemic (affecting the whole body) therapy before. Busulfan and fludarabine are FDA approved and commercially available for use with a stem cell transplant. The use of the combination of romidepsin, busulfan, and fludarabine to treat the type of leukemia or lymphoma you have is considered investigational. Up to 30 participants will be enrolled in this study. All will take part at MD Anderson.

TERMINATED
BL-8040 and Nelarabine for Relapsed or Refractory T-Acute Lymphoblastic Leukemia/ Lymphoblastic Lymphoma
Description

The outcome of patients with relapsed or refractory adult T-acute lymphoblastic leukemia (T-ALL) and the related disease T-lymphoblastic lymphoma (T-LBL) is extremely poor with 30% of the patients responding to first salvage therapy and long-term survival of only 10%. Therefore, novel therapies for patients with relapsed/refractory T-ALL/LBL represent an unmet clinical need. Recent data provide strong evidence that CXCR4 signaling plays a major role in T-cell leukemia cell maintenance and leukemia initiating activity, and targeting CXCR4 signaling in T-ALL cells reduces tumor growth in an animal model. In this study, the investigators propose that the addition of BL-8040 to nelarabine as a salvage therapy for patients with relapsed/refractory T-ALL/LBL will result in a higher complete remission (CR) rate than nelarabine alone without an increase in toxicity and will allow patients to proceed to a potentially curative allogeneic hematopoietic cell transplant.

TERMINATED
Safety and Efficacy of Isatuximab in Lymphoblastic Leukemia
Description

Primary Objective: To evaluate the efficacy of isatuximab. Secondary Objectives: * To evaluate the safety profile of isatuximab. * To evaluate the duration of response (DOR). * To evaluate progression free survival (PFS) and overall survival (OS). * To evaluate the pharmacokinetics (PK) of isatuximab in participants with T-ALL or T-LBL. * To evaluate immunogenicity of isatuximab in participants with T-ALL or T-LBL. * To assess minimal residual disease (MRD) and correlate it with clinical outcome.

COMPLETED
HLA-Mismatched Unrelated Donor Bone Marrow Transplantation With Post-Transplantation Cyclophosphamide
Description

This is a multi-center, single arm Phase II study of hematopoietic cell transplantation (HCT) using human leukocyte antigen (HLA)-mismatched unrelated bone marrow transplantation donors and post-transplantation cyclophosphamide (PTCy), sirolimus and mycophenolate mofetil (MMF) for graft versus host disease (GVHD) prophylaxis in patients with hematologic malignancies.

RECRUITING
Studying the Effect of Levocarnitine in Protecting the Liver From Chemotherapy for Leukemia or Lymphoma
Description

This phase III trial compares the effect of adding levocarnitine to standard chemotherapy versus (vs.) standard chemotherapy alone in protecting the liver in patients with leukemia or lymphoma. Asparaginase is part of the standard of care chemotherapy for the treatment of acute lymphoblastic leukemia (ALL), lymphoblastic lymphoma (LL), and mixed phenotype acute leukemia (MPAL). However, in adolescent and young adults (AYA) ages 15-39 years, liver toxicity from asparaginase is common and often prevents delivery of planned chemotherapy, thereby potentially compromising outcomes. Some groups of people may also be at higher risk for liver damage due to the presence of fat in the liver even before starting chemotherapy. Patients who are of Japanese descent, Native Hawaiian, Hispanic or Latinx may be at greater risk for liver damage from chemotherapy for this reason. Carnitine is a naturally occurring nutrient that is part of a typical diet and is also made by the body. Carnitine is necessary for metabolism and its deficiency or absence is associated with liver and other organ damage. Levocarnitine is a drug used to provide extra carnitine. Laboratory and real-world usage of the dietary supplement levocarnitine suggests its potential to prevent or reduce liver toxicity from asparaginase. The overall goal of this study is to determine whether adding levocarnitine to standard of care chemotherapy will reduce the chance of developing severe liver damage from asparaginase chemotherapy in ALL, LL and/or MPAL patients.

TERMINATED
Tagraxofusp and Low-Intensity Chemotherapy for the Treatment of CD123 Positive Relapsed or Refractory Acute Lymphoblastic Leukemia or Lymphoblastic Lymphoma
Description

This phase Ib/II trial studies the effects of tagraxofusp and low-intensity chemotherapy in treating patients with CD123 positive acute lymphoblastic leukemia or lymphoblastic lymphoma that has come back (relapsed) or does not respond to treatment (refractory). Tagraxofusp consists of human interleukin 3 (IL3) linked to a toxic agent called DT388. IL3 attaches to IL3 receptor positive cancer cells in a targeted way and delivers DT388 to kill them. Chemotherapy drugs, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving tagraxofusp with chemotherapy may help control CD123 positive relapsed or refractory acute lymphoblastic leukemia or lymphoblastic lymphoma.

COMPLETED
A Phase 1/2 Study of the Safety and Efficacy of Anti-CD7 Allogeneic CAR-T Cells (WU-CART-007) in Patients With Relapsed or Refractory T-ALL/LBL
Description

The main purpose of this study is to evaluate the safety, recommended dose, and preliminary anti-tumor activity of WU-CART-007 in patients with relapsed or refractory (R/R) T-cell acute lymphoblastic leukemia (T-ALL) or lymphoblastic lymphoma (LBL).

COMPLETED
A Study of LY3039478 in Combination With Dexamethasone in Participants With T-ALL/T-LBL
Description

The main purpose of this study is to evaluate the safety of the study drug known as LY3039478 in combination with dexamethasone in participants with T-cell acute lymphoblastic leukemia or T-cell lymphoblastic lymphoma (T-ALL/T-LBL).

ACTIVE_NOT_RECRUITING
Combination Chemotherapy With or Without Bortezomib in Treating Younger Patients With Newly Diagnosed T-Cell Acute Lymphoblastic Leukemia or Stage II-IV T-Cell Lymphoblastic Lymphoma
Description

This randomized phase III trial compares how well combination chemotherapy works when given with or without bortezomib in treating patients with newly diagnosed T-cell acute lymphoblastic leukemia or stage II-IV T-cell lymphoblastic lymphoma. Bortezomib may help reduce the number of leukemia or lymphoma cells by blocking some of the enzymes needed for cell growth. It may also help chemotherapy work better by making cancer cells more sensitive to the drugs. It is not yet known if giving standard chemotherapy with or without bortezomib is more effective in treating newly diagnosed T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma.

COMPLETED
Alisertib in Combination With Vorinostat in Treating Patients With Relapsed or Recurrent Hodgkin Lymphoma, B-Cell Non-Hodgkin Lymphoma, or Peripheral T-Cell Lymphoma
Description

This phase I trial studies the side effects and the best dose of alisertib when given together with vorinostat in treating patients with Hodgkin lymphoma, B-cell non-Hodgkin lymphoma, or peripheral T-cell lymphoma that has come back. Alisertib and vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

COMPLETED
Temsirolimus, Dexamethasone, Mitoxantrone Hydrochloride, Vincristine Sulfate, and Pegaspargase in Treating Young Patients With Relapsed Acute Lymphoblastic Leukemia or Non-Hodgkin Lymphoma
Description

This phase I trial studies the side effects and the best dose of temsirolimus when given together with dexamethasone, mitoxantrone hydrochloride, vincristine sulfate, and pegaspargase in treating young patients with relapsed acute lymphoblastic leukemia or non-Hodgkin lymphoma. Temsirolimus may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as dexamethasone, mitoxantrone hydrochloride, vincristine sulfate, and pegaspargase work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving temsirolimus with combination chemotherapy may be and effective treatment for acute lymphoblastic leukemia or non-Hodgkin lymphoma.

COMPLETED
Dasatinib in Treating Patients With Solid Tumors or Lymphomas That Are Metastatic or Cannot Be Removed By Surgery
Description

This phase I trial studies the side effects and best dose of dasatinib in treating patients with solid tumors or lymphomas that are metastatic or cannot be removed by surgery. Dasatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

Conditions
Adult Acute Lymphoblastic Leukemia in RemissionAdult B Acute Lymphoblastic LeukemiaAdult Hepatocellular CarcinomaAdult Nasal Type Extranodal NK/T-Cell LymphomaAdult Solid NeoplasmAdult T Acute Lymphoblastic LeukemiaAdvanced Adult Hepatocellular CarcinomaAnaplastic Large Cell LymphomaAngioimmunoblastic T-Cell LymphomaChronic Lymphocytic LeukemiaCutaneous B-Cell Non-Hodgkin LymphomaExtranodal Marginal Zone Lymphoma of Mucosa-Associated Lymphoid TissueHepatosplenic T-Cell LymphomaIntraocular LymphomaLocalized Non-Resectable Adult Liver CarcinomaLocalized Resectable Adult Liver CarcinomaLymphomatous Involvement of Non-Cutaneous Extranodal SiteMature T-Cell and NK-Cell Non-Hodgkin LymphomaNodal Marginal Zone LymphomaProgressive Hairy Cell Leukemia Initial TreatmentRecurrent Adult Acute Lymphoblastic LeukemiaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Grade III Lymphomatoid GranulomatosisRecurrent Adult Hodgkin LymphomaRecurrent Adult Immunoblastic LymphomaRecurrent Adult Liver CarcinomaRecurrent Adult Lymphoblastic LymphomaRecurrent Adult T-Cell Leukemia/LymphomaRecurrent Cutaneous T-Cell Non-Hodgkin LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Mycosis Fungoides and Sezary SyndromeRecurrent Small Lymphocytic LymphomaRefractory Chronic Lymphocytic LeukemiaRefractory Hairy Cell LeukemiaSmall Intestinal LymphomaSplenic Marginal Zone LymphomaStage II Small Lymphocytic LymphomaStage III Adult Burkitt LymphomaStage III Adult Diffuse Large Cell LymphomaStage III Adult Diffuse Mixed Cell LymphomaStage III Adult Diffuse Small Cleaved Cell LymphomaStage III Adult Hodgkin LymphomaStage III Adult Immunoblastic LymphomaStage III Adult Lymphoblastic LymphomaStage III Adult T-Cell Leukemia/LymphomaStage III Chronic Lymphocytic LeukemiaStage III Cutaneous T-Cell Non-Hodgkin LymphomaStage III Grade 1 Follicular LymphomaStage III Grade 2 Follicular LymphomaStage III Grade 3 Follicular LymphomaStage III Mantle Cell LymphomaStage III Marginal Zone LymphomaStage III Small Lymphocytic LymphomaStage IIIA Mycosis Fungoides and Sezary SyndromeStage IIIB Mycosis Fungoides and Sezary SyndromeStage IV Adult Burkitt LymphomaStage IV Adult Diffuse Large Cell LymphomaStage IV Adult Diffuse Mixed Cell LymphomaStage IV Adult Diffuse Small Cleaved Cell LymphomaStage IV Adult Hodgkin LymphomaStage IV Adult Immunoblastic LymphomaStage IV Adult Lymphoblastic LymphomaStage IV Adult T-Cell Leukemia/LymphomaStage IV Chronic Lymphocytic LeukemiaStage IV Cutaneous T-Cell Non-Hodgkin LymphomaStage IV Grade 1 Follicular LymphomaStage IV Grade 2 Follicular LymphomaStage IV Grade 3 Follicular LymphomaStage IV Mantle Cell LymphomaStage IV Marginal Zone LymphomaStage IV Small Lymphocytic LymphomaStage IVA Mycosis Fungoides and Sezary SyndromeStage IVB Mycosis Fungoides and Sezary SyndromeT-Cell Large Granular Lymphocyte LeukemiaTesticular LymphomaUntreated Adult Acute Lymphoblastic LeukemiaUntreated Hairy Cell LeukemiaWaldenstrom Macroglobulinemia
RECRUITING
Combination Chemotherapy and Nelarabine in Treating Patients with T-cell Acute Lymphoblastic Leukemia or Lymphoblastic Lymphoma
Description

This phase II trial studies the side effects and how well combination chemotherapy and nelarabine work in treating patients with T-cell acute lymphoblastic leukemia or lymphoblastic lymphoma. Drugs used in chemotherapy, such as cyclophosphamide, vincristine, doxorubicin, dexamethasone, methotrexate, cytarabine, mercaptopurine, prednisone, pegaspargase, nelarabine, and venetoclax work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.

COMPLETED
Combination Chemotherapy in Treating Young Patients With Newly Diagnosed T-Cell Acute Lymphoblastic Leukemia or T-cell Lymphoblastic Lymphoma
Description

This randomized phase III trial is studying different combination chemotherapy regimens and their side effects and comparing how well they work in treating young patients with newly diagnosed T-cell acute lymphoblastic leukemia or T-cell lymphoblastic lymphoma. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. It is not yet known which combination chemotherapy regimen is more effective in treating T-cell acute lymphoblastic leukemia or T-cell lymphoblastic lymphoma. After a common induction therapy, patients were risk assigned and eligible for one or both post-induction randomizations: Escalating dose Methotrexate versus High Dose Methotrexate in Interim Maintenance therapy, No Nelarabine versus Nelarabine in Consolidation therapy. T-ALL patients are risk assigned as Low Risk, Intermediate Risk or High Risk. Low Risk patients are not eligible for the Nelarabine randomization, Patients with CNS disease at diagnosis were assgined to receive High Dose Methotrexate, patients who failed induction therapy were assigned to receive Nelarabine and High Dose Methotrexate. T-LLy patients were all assigned to escalating dose Methotrexate and were risk assigned as Standard Risk, High Risk and induction failures. Standard risk patients did not receive nelarabine, High risk T-LLy patients were randomized to No Nelarabine versus Nelarabine, and Induction failures were assigned to receive Nelarabine.

ACTIVE_NOT_RECRUITING
Venetoclax and Vincristine in Treating Patients With Relapsed or Refractory T-cell or B-cell Acute Lymphoblastic Leukemia
Description

This phase Ib/II trial studies the side effects and best dose of venetoclax and how well it works when given together with vincristine in treating patients with T-cell or B-cell acute lymphoblastic leukemia that has come back (recurrent) or does not respond to treatment (refractory). Venetoclax may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Chemotherapy drugs, such as vincristine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving venetoclax together with vincristine may work better in treating patients with acute lymphoblastic leukemia compared to vincristine alone.

ACTIVE_NOT_RECRUITING
Flotetuzumab for the Treatment of Relapsed or Refractory Advanced CD123-Positive Hematological Malignancies
Description

This phase I trial studies the best dose and side effects of flotetuzumab for the treatment of patients with blood cancers (hematological malignancies) that have spread to other places in the body (advanced) and have come back after a period of improvement (relapsed) or does not respond to treatment (refractory). Flotetuzumab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread.

TERMINATED
Study of CB-103 in Adult Patients With Advanced or Metastatic Solid Tumours and Haematological Malignancies
Description

This is a phase I/II, non randomized, open-label, dose escalation study to investigate the safety, tolerability and preliminary efficacy of CB-103.

TERMINATED
Donor Peripheral Blood Stem Cell Transplant in Treating Patients With Hematologic Malignancies
Description

This phase II trial studies how well donor peripheral blood stem cell (PBSC) transplant works in treating patients with hematologic malignancies. Cyclophosphamide when added to tacrolimus and mycophenolate mofetil is safe and effective in preventing severe graft-versus-host disease (GVHD) in most patients with hematologic malignancies undergoing transplantation of bone marrow from half-matched (haploidentical) donors. This approach has extended the transplant option to patients who do not have matched related or unrelated donors, especially for patients from ethnic minority groups. The graft contains cells of the donor's immune system which potentially can recognize and destroy the patient's cancer cells (graft-versus-tumor effect). Rejection of the donor's cells by the patient's own immune system is prevented by giving low doses of chemotherapy (fludarabine phosphate and cyclophosphamide) and total-body irradiation before transplant. Patients can experience low blood cell counts after transplant. Using stem cells and immune cells collected from the donor's circulating blood may result in quicker recovery of blood counts and may be more effective in treating the patient's disease than using bone marrow.