8 Clinical Trials for Various Conditions
This is a Phase II, single-arm study to evaluate the efficacy, safety, and PK of oral linperlisib (YY-20394) monotherapy in adult patients with R/R Peripheral T/NK Cell Lymphoma. The study will be conducted at approximately 15 sites in United States.
Purpose: This study will evaluate the safety of CHOP plus Alemtuzumab in patients with T/NK cell lymphomas and CD-20 negative large B-cell lymphomas who have not had previous treatments. The biological response of lymphoma cells and the immune system to this drug combination will also be measured in patients before, during, and after therapy administration.
This is a pilot study designed to evaluate the safety and feasibility of performing umbilical cord blood transplants in adults with high-risk hematopoietic malignancies. A novel myeloablative preparative regimen will be used. One, up to a maximum of three cord blood units will be administered to facilitate engraftment.
Primary Objectives: 1. To evaluate the response rate for patients with T-cell Non-Hodgkin's Lymphoma (NHL)receiving the combination of vorinostat and bortezomib 2. To evaluate the safety and tolerability of the combination of vorinostat and bortezomib in patients with relapsed or refractory T-cell NHL. Secondary Objectives: 1. To assess overall survival and time to treatment failure in patients with T-cell NHL treated with the combination of vorinostat and bortezomib. 2. Correlative studies will be done to assess the role of vorinostat mediated apoptosis along with bortezomib synergy. Changes in marker expression from baseline to post treatment will be correlated with patient clinical response.
This study is for patients with lymphoproliferative malignancies that have progressed after receiving a previous treatment (relapsed) or are no longer responding to treatment (refractory). To be in this study, patients must have certain types of Hodgkin's lymphoma (HL), peripheral T-cell lymphoma (PTCL), or B-cell lymphoma, including Waldenstrom's macroglobulinemia. This study is being done to find doses of the combination of pralatrexate and gemcitabine with vitamin B12 and folic acid that can be safely given to patients with these types of lymphoma and explore the effectiveness of the treatment.
RATIONALE: Everolimus and bortezomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase I trial is studying the side effects and best dose of everolimus when given together with bortezomib in treating patients with relapsed or refractory lymphoma.
This protocol is broken up into 2 portions to determine the maximum tolerated dose for treating patients with a type of lymph gland disease. The 1st portion, called ALASCER are for people with a type of lymph gland cancer called Hodgkin or non-Hodgkin Lymphoma or Lymphoepithelioma which has returned or may return or has not gone away after treatment, including the best treatment we know for Lymphoma. While the 2nd portion (ALCI) also includes Lymphoepithelioma, severe chronic active EBV (SCAEBC), and leiomyosarcoma. Some patients with Lymphoma show evidence of infection with the virus that causes infectious mononucleosis Epstein Barr virus (EBV) before or at the time of their diagnosis. EBV is found in the cancer cells of up to half the patients with Hodgkin's and non-Hodgkin Lymphoma, suggesting that it may play a role in causing Lymphoma. The cancer cells (in lymphoma) and some B cells (in SCAEBV) infected by EBV are able to hide from the body's immune system and escape destruction. Investigators want to see if special white blood cells, called T cells, that have been trained to kill EBV infected cells can survive in your blood and affect the tumor. The investigators have used this sort of therapy to treat a different type of cancer that occurs after bone marrow or solid organ transplant called post transplant lymphoma. In this type of cancer the tumor cells have 9 proteins made by EBV on their surface. The investigators grew T cells in the laboratory that recognized all 9 proteins and were able to successfully prevent and treat post transplant lymphoma. However in Hodgkin disease and non-Hodgkin Lymphoma and SCAEBV, the tumor cells and B cells only express 2 EBV proteins. In a previous study we made T cells that recognized all 9 proteins and gave them to patients with Hodgkin disease. Some patients had a partial response to this therapy but no patients had a complete response. Investigators think one reason may be that many of the T cells reacted with proteins that were not on the tumor cells. In this present study we are trying to find out if we can improve this treatment by growing T cells that only recognize one of the proteins expressed on infected EBV Lymphoma cells called LMP-2a, and B cells called LMP1 and LMP2. These special T cells are called LMP specific cytotoxic T-lymphocytes (CTLs). The purpose of the study is to find the largest safe dose of LMP specific cytotoxic T cells, to learn what the side effects are and to see whether this therapy might help patients with Hodgkin disease, non-Hodgkin Lymphoma, Lymphoepithelioma, SCAEBV or leiomyosarcoma.
Subjects have a type of lymph gland disease called Hodgkin or non-Hodgkin Lymphoma or T/NK-lymphoproliferative disease or severe chronic active Epstein Barr Virus (CAEBV) which has come back, is at risk of coming back, or has not gone away after treatment, including the best treatment we know for these diseases. Some of these patients show signs of virus that is called Epstein Barr virus (EBV) that causes mononucleosis or glandular fever ("mono" or the "kissing disease") before or at the time of their diagnosis. EBV is found in the cancer cells of up to half the patients with HD and NHL, suggesting that it may play a role in causing Lymphoma. The cancer cells and some immune system cells infected by EBV are able to hide from the body's immune system and escape destruction. We want to see if special white blood cells, called GRALE T cells, that have been trained to kill EBV infected cells can survive in the blood and affect the tumor. We have used this sort of therapy to treat a different type of cancer called post transplant lymphoma. In this type of cancer the tumor cells have 9 proteins made by EBV on their surface. We grew T cells in the lab that recognized all 9 proteins and were able to successfully prevent and treat post transplant lymphoma. However, in HD and NHL, T/NK-lymphoproliferative disease, and CAEBV, the tumor cells and B cells only express 4 EBV proteins. In a previous study, we made T cells that recognized all 9 proteins and gave them to patients with HD. Some patients had a partial response to this therapy but no patients had a complete response. We then did follow up studies where we made T cells that recognized the 2 EBV proteins seen in patients with lymphoma, T/NK-lymphoproliferative disease and CAEBV. We have treated over 50 people on those studies. About 60% of those patients who had disease at the time they got the cells had responses including some patients with complete responses. This study will expand on those results and we will try and make the T cells in the lab in a simpler faster way. These cells are called GRALE T cells. These GRALE T cells are an investigational product not approved by the FDA. The purpose of this study is to find the largest safe dose of LMP-specific cytotoxic GRALE T cells created using this new manufacturing technique. We will learn what the side effects are and to see whether this therapy might help patients with HD or NHL or EBV associated T/NK-lymphoproliferative disease or CAEBV.