324 Clinical Trials for Various Conditions
This research study is evaluating a combination of drugs considered standard treatment for children and young adults with acute lymphoblastic leukemia (ALL), in combination with a new drug called MLN 9708. Additionally, the study is also evaluating if bone marrow or stem cell transplantation, which will be given to some participants, helps to prevent ALL from returning.
This phase I trial studies the side effects and best dose of CPI-613 when given together with bendamustine hydrochloride in treating patients with relapsed or refractory T-cell non-Hodgkin lymphoma or Hodgkin lymphoma. CPI-613 may kill cancer cells by turning off their mitochondria, which are used by cancer cells to produce energy and are the building blocks needed to make more cancer cells. By shutting off mitochondria, CPI-613 may deprive the cancer cells of energy and other supplies needed to survive and grow. Drugs used in chemotherapy, such as bendamustine hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving CPI-613 with bendamustine hydrochloride may kill more cancer cells.
This study evaluates the value of bortezomib in combination with specified chemotherapies for the treatment of patients with relapsed or refractory acute lymphoblastic leukemia. Bortezomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase II clinical trial studies how well Akt inhibitor MK2206 works in treating patients with relapsed lymphoma. Akt inhibitor MK2206 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
RATIONALE: Giving chemotherapy before a donor umbilical cord blood transplant (UCBT) helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the stem cells from an unrelated donor, that do not exactly match the patient's blood, are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving antithymocyte globulin before transplant and cyclosporine and mycophenolate mofetil after transplant may stop this from happening. PURPOSE: This phase II trial is studying how well donor umbilical cord blood stem cell transplant works in treating patients with hematologic malignancies.
This phase I/II trial studies the side effects and best dose of panobinostat and everolimus when given together and to see how well they work in treating patients with multiple myeloma, non-Hodgkin lymphoma, or Hodgkin lymphoma that has come back. Panobinostat and everolimus may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This pilot, phase II trial studies the side effects of giving bortezomib together with combination chemotherapy and to see how well it works in treating young patients with relapsed acute lymphoblastic leukemia or lymphoblastic lymphoma. Bortezomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving bortezomib together with combination chemotherapy may kill more cancer cells.
This phase I trial is studying the side effects and best dose of 7-hydroxystaurosporine when given together with perifosine in treating patients with relapsed or refractory acute leukemia, chronic myelogenous leukemia, or myelodysplastic syndromes. 7-Hydroxystaurosporine may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as perifosine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving 7-hydroxystaurosporine together with perifosine may kill more cancer cells.
This phase I/II trial studies the side effects and best dose of alemtuzumab when given together with combination chemotherapy and to see how well it works in treating patients with untreated acute lymphoblastic leukemia. Monoclonal antibodies, such as alemtuzumab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Drugs used in chemotherapy also work in different ways to kill cancer cells or stop them from growing. Giving alemtuzumab together with combination chemotherapy may be a better way to block cancer growth.
This phase I/II trial is studying the side effects of biological therapy and to see how well it works in treating patients with advanced myelodysplastic syndrome, chronic myeloid leukemia, acute myeloid leukemia, or acute lymphoblastic leukemia. Biological therapies, including immunotherapy, can potentially be used to stimulate the immune system and stop cancer cells from growing. Immunotherapy given to patients who have undergone donor stem cell transplantation may be a way to eradicate remaining cancer cells
RATIONALE: Drugs used in chemotherapy, such as cytarabine and clofarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. PURPOSE: This phase II trial is studying how well giving cytarabine together with clofarabine works in treating patients with relapsed or refractory acute lymphoblastic leukemia.
RATIONALE: Biological therapies, such as cellular adoptive immunotherapy, stimulate the immune system in different ways and stop cancer cells from growing. PURPOSE: This phase I trial is studying the side effects of cellular adoptive immunotherapy in treating patients with acute myeloid leukemia, acute lymphoblastic leukemia, or myelodysplastic syndromes that relapsed after donor stem cell transplant.
RATIONALE: Peripheral stem cell transplantation may be able to replace immune cells that were destroyed by the chemotherapy or radiation therapy used to kill tumor cells. Sometimes the transplanted cells are rejected by the body's normal tissues. Transplanting donated cells that have been treated with psoralen may prevent this from happening. PURPOSE: Phase I trial to study the effectiveness of chemotherapy, radiation therapy, and psoralen-treated donor cells in treating patients who are undergoing peripheral stem cell transplantation for hematologic cancer.
RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. PURPOSE: Clinical trial to study the effectiveness of 506U78 in treating patients who have relapsed or refractory T-cell acute lymphoblastic leukemia or T-cell lymphoblastic lymphoma.
Phase II trial to study the effectiveness of 506U78 in treating patients with refractory or relapsed acute lymphoblastic leukemia or lymphoblastic lymphoma. Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one drug may kill more tumor cells. It is not yet known which regimen of combination chemotherapy is more effective for acute lymphoblastic leukemia, lymphoblastic lymphoma, or chronic myelogenous leukemia. PURPOSE: This randomized phase III trial is studying two different chemotherapy regimens and comparing them to see how well they work in treating adults with acute lymphoblastic leukemia, lymphoblastic lymphoma, or chronic myelogenous leukemia.
To assess the safety of administering allogenic, donor-derived CD19/CD22-CAR T cells that meet established release specifications in adults with B-cell ALL following a myeloablative conditioning regimen and Orca-T to determine if this will augment graft versus leukemia without increasing acute GVHD or graft failure.
The purpose of this Phase 1, first in human open-label study is to assess the safety and tolerability of TRX-103 in patients with hematological malignancies undergoing HLA-mismatched related or unrelated hematopoietic stem cell transplantation (HSCT). It is anticipated that up to 36 Subjects will be enrolled during a 18-24 month enrollment period. TRX-103 will be infused one time post HSCT.
This phase I trial tests the safety, side effects, and best dose of autologous anti-CD19 CAR-expressing T lymphocytes (CD19-CAR T cells) in older adults with B-cell acute lymphoblastic leukemia. Chimeric antigen receptor (CAR) T-cell therapy is a type of treatment in which a patient's T cells (a type of immune system cell) are changed in the laboratory so they will attack cancer cells. T cells are taken from a patient's blood. Then the gene for a special receptor that binds to a certain protein on the patient's cancer cells is added to the T cells in the laboratory. The special receptor is called a chimeric antigen receptor (CAR). Large numbers of the CAR T cells are grown in the laboratory and given to the patient by infusion for treatment of B-cell acute lymphoblastic leukemia.
This phase I trial studies the side effects and best dose of CD4+ and CD8+ HA-1 T cell receptor (TCR) (HA-1 T TCR) T cells in treating patients with acute leukemia that persists, has come back (recurrent) or does not respond to treatment (refractory) following donor stem cell transplant. T cell receptor is a special protein on T cells that helps them recognize proteins on other cells including leukemia. HA-1 is a protein that is present on the surface of some peoples' blood cells, including leukemia. HA-1 T cell immunotherapy enables genes to be added to the donor cells to make them recognize HA-1 markers on leukemia cells.
This phase I trial studies the best dose and side effects of CD19/CD22 chimeric antigen receptor (CAR) T cells when given together with chemotherapy, and to see how well they work in treating children or young adults with CD19 positive B acute lymphoblastic leukemia that has come back or does not respond to treatment. A CAR is a genetically-engineered receptor made so that immune cells (T cells) can attack cancer cells by recognizing and responding to the CD19/CD22 proteins. These proteins are commonly found on B acute lymphoblastic leukemia. Drugs used in chemotherapy, such as fludarabine phosphate and cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving CD19/CD22-CAR T cells and chemotherapy may work better in treating children or young adults with B acute lymphoblastic leukemia.
This phase I trial studies the side effects of huJCAR014 in treating patients with relapsed or refractory B-cell non-Hodgkin lymphoma or acute lymphoblastic leukemia. huJCAR014 CAR-T cells are made in the laboratory by genetically modifying a patient's T cells and may specifically kill cancer cells that have a molecule CD19 on their surfaces. In Stage 1, dose-finding studies will be conducted in 3 cohorts: 1. Aggressive B cell NHL 2. Low burden ALL 3. High burden ALL In Stage 2, studies may be conducted in one or more cohorts to collect further safety, PK, and efficacy information at the huJCAR014 dose level(s) selected in Stage 1 for the applicable cohort(s). There are two separate cohorts for stage 2: 1. Cohort 2A, CAR-naïve (n=10): patients who have never received CD19 CAR-T cell therapy. 2. Cohort 2B, CAR-exposed (n=27): patients who have previously failed CD19 CAR-T cell therapy.
This phase I trial studies the side effects and the best dose of genetically modified T-cells after lymphodepleting chemotherapy in treating patients with acute myeloid leukemia or blastic plasmacytoid dendritic cell neoplasm that has returned after a period of improvement or has not responded to previous treatment. An immune cell is a type of blood cell that can recognize and kill abnormal cells in the body. The immune cell product will be made from patient or patient's donor (related or unrelated) blood cells. The immune cells are changed by inserting additional pieces of deoxyribonucleic acid (DNA) (genetic material) into the cell to make it recognize and kill cancer cells. Placing a modified gene into white blood cells may help the body build an immune response to kill cancer cells.
This phase I/II trial studies the side effects and best dose of laboratory treated T cells to see how well they work in treating patients with chronic lymphocytic leukemia, non-Hodgkin lymphoma, or acute lymphoblastic leukemia that have come back or have not responded to treatment. T cells that are treated in the laboratory before being given back to the patient may make the body build an immune response to kill cancer cells.
This phase II trial studies how well T cell depleted donor peripheral blood stem cell transplant works in preventing graft-versus-host disease in younger patients with high risk hematologic malignancies. Giving chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Removing a subset of the T cells from the donor cells before transplant may stop this from happening.
This pilot phase II trial studies how well giving donor T cells after donor stem cell transplant works in treating patients with hematologic malignancies. In a donor stem cell transplant, the donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor's T cells (donor lymphocyte infusion) after the transplant may help increase this effect.
This phase I trial studies the side effects and the best dose of alisertib when given together with vorinostat in treating patients with Hodgkin lymphoma, B-cell non-Hodgkin lymphoma, or peripheral T-cell lymphoma that has come back. Alisertib and vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase I/II trial studies the safety and toxicity of post-transplant treatment with donor T cells engineered to express a chimeric antigen receptor (CAR) targeting CD19 in patients who have had a matched related allogeneic hematopoietic stem cell transplant for a CD19+ B cell malignancy.
RATIONALE: Allogeneic hematopoietic stem cell transplant (HSCT) is a treatment that can cure acute leukemia and myelodysplasia. After giving the patient chemotherapy and total body irradiation to stop the growth of cancer and remove the patient's diseased bone marrow, healthy stem cells from a donor are infused into the patient to replace the patient's bone marrow and make red and white blood cells and platelets. Unfortunately HSCT is often complicated by 'graft versus host disease' (GVHD) in which the transplanted cells from a donor can make an immune response against the body's normal cells and cause tissue damage and severe symptoms. Removing a subset of the donor T cells, called 'naive T cells', before transplant may reduce the frequency and intensity of GVHD. PURPOSE: This phase II trial will determine whether the removal of the naive T cells from donor cells can decrease the rate and severity of graft-vs-host disease while preserving specific immunity against infections in patients with acute leukemia or advanced myelodysplastic syndromes.
RATIONALE: A donor peripheral stem cell transplant helps stop the growth of cancer cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Once the donated stem cells begin working, the patient's immune system may see the remaining cancer cells as not belonging in the patient's body and destroy them. Giving an infusion of donor T cells may helps stop the patient's immune system from rejecting the donor's stem cells. PURPOSE: This phase I/II trial is studying the side effects and best dose of donor T cells in treating patients with high-risk hematologic cancer who are undergoing donor peripheral blood stem cell transplant. Note: Only Phase I portion of study was performed. Due to slow accrual, study was closed before Phase II portion of study.