108 Clinical Trials for Various Conditions
The purpose of this study is to determine whether Nivolumab is effective in the treatment of Relapsed/Refractory Primary Central Nervous System Lymphoma (PCNSL) and Relapsed/Refractory Primary Testicular Lymphoma (PTL)
This phase I/II trial studies the side effects and best dose of lenalidomide when given together with combination chemotherapy and to see how well they work in treating patients with v-myc myelocytomatosis viral oncogene homolog (avian) (MYC)-associated B-cell lymphomas. Lenalidomide may stop the growth of B-cell lymphomas by blocking the growth of new blood vessels necessary for cancer growth and by blocking some of the enzymes needed for cell growth. Biological therapies, such as lenalidomide, use substances made from living organisms that may stimulate or suppress the immune system in different ways and stop cancer cells from growing. Drugs used in chemotherapy, such as etoposide, prednisone, vincristine sulfate, doxorubicin hydrochloride, cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Monoclonal antibodies, such as rituximab, may block cancer growth in different ways by targeting certain cells. Giving lenalidomide together with combination chemotherapy may be an effective treatment in patients with B-cell lymphoma.
This phase I trial studies the side effects and best dose of CPI-613 (6,8-bis\[benzylthio\]octanoic acid) when given together with bendamustine hydrochloride and rituximab in treating patients with B-cell non-Hodgkin lymphoma that has come back or has not responded to treatment. Drugs used in chemotherapy, such as 6,8-bis(benzylthio)octanoic acid and bendamustine hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Monoclonal antibodies, such as rituximab, may find cancer cells and help kill them. Giving 6,8-bis(benzylthio)octanoic acid with bendamustine hydrochloride and rituximab may kill more cancer cells.
This phase I trial studies the side effects and best dose of ibrutinib in treating B-cell non-Hodgkin lymphoma that has returned or does not respond to treatment in patients with human immunodeficiency virus (HIV) infection. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. It is not yet known whether it is safe for patients with HIV infection to receive ibrutinib while also taking anti-HIV drugs.
This pilot phase II trial studies how well giving donor T cells after donor stem cell transplant works in treating patients with hematologic malignancies. In a donor stem cell transplant, the donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor's T cells (donor lymphocyte infusion) after the transplant may help increase this effect.
This phase I trial studies the side effects and best dose of genetically modified T-cells following peripheral blood stem cell transplant in treating patients with recurrent or high-risk non-Hodgkin lymphoma. Giving chemotherapy before a stem cell transplant helps stop the growth of cancer cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Removing the T cells from the donor cells before transplant may stop this from happening. Giving an infusion of the donor's T cells (donor lymphocyte infusion) later may help the patient's immune system see any remaining cancer cells as not belonging in the patient's body and destroy them (called graft-versus-tumor effect)
This clinical trial studies genetically modified peripheral blood stem cell transplant in treating patients with HIV-associated non-Hodgkin or Hodgkin lymphoma. Giving chemotherapy before a peripheral stem cell transplant stops the growth of cancer cells by stopping them from dividing or killing them. After treatment, stem cells are collected from the patient's blood and stored. More chemotherapy or radiation therapy is then given to prepare the bone marrow for the stem cell transplant. Laboratory-treated stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy and radiation therapy
This pilot phase 1-2 trial studies the side effects and best of dose ipilimumab when given together with local radiation therapy and to see how well it works in treating patients with recurrent melanoma, non-Hodgkin lymphoma, colon, or rectal cancer. Monoclonal antibodies, such as ipilimumab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Radiation therapy uses high energy x rays to kill cancer cells. Giving monoclonal antibody therapy together with radiation therapy may be an effective treatment for melanoma, non-Hodgkin lymphoma, colon, or rectal cancer. * The phase 1 component ("safety") of this study is ipilimumab 25 mg monotherapy. * The phase 2 component ("treatment-escalation") of this study is ipilimumab 25 mg plus radiation combination therapy.
This phase I trial studies the side effects and best dose of MORAb-004 in treating young patients with recurrent or refractory solid tumors or lymphoma. Monoclonal antibodies, such as MORAb-004, can block cancer growth in different ways. Some block the ability of cancer to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them
This phase I trial studies the side effects and best dose of monoclonal antibody therapy before stem cell transplant in treating patients with relapsed or refractory lymphoid malignancies. Radiolabeled monoclonal antibodies, such as yttrium-90 anti-CD45 monoclonal antibody BC8, can find cancer cells and carry cancer-killing substances to them without harming normal cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Giving radiolabeled monoclonal antibody before a stem cell transplant may be an effective treatment for relapsed or refractory lymphoid malignancies.
This phase I trial is studying the side effects and best dose of methoxyamine when given together with fludarabine phosphate in treating patients with relapsed or refractory hematologic malignancies. Drugs used in chemotherapy, such as methoxyamine and fludarabine phosphate, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving methoxyamine together with fludarabine phosphate may kill more cancer cells.
This study will determine the safety and applicability of experimental forms of umbilical cord blood (UCB) transplantation for patients with high risk hematologic malignancies who might benefit from a hematopoietic stem cell transplant (HSCT) but who do not have a standard donor option (no available HLA-matched related donor (MRD), HLA-matched unrelated donor (MUD)), or single UCB unit with adequate cell number and HLA-match).
This phase I trial studies the side effects and the best dose of alisertib when given together with vorinostat in treating patients with Hodgkin lymphoma, B-cell non-Hodgkin lymphoma, or peripheral T-cell lymphoma that has come back. Alisertib and vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase II trial studies how well cyclophosphamide works in preventing chronic graft-versus-host disease after allogeneic peripheral blood stem cell transplant in patients with hematological malignancies. Giving chemotherapy and total-body irradiation before transplantation helps stop the growth of cancer cells and prevents the patient's immune system from rejecting the donor's stem cells. Healthy stem cells from a donor that are infused into the patient help the patient's bone marrow make blood cells; red blood cells, white blood cells, and platelets. Sometimes, however, the transplanted donor cells can cause an immune response against the body's normal cells, which is called graft-versus-host disease (GVHD). Giving cyclophosphamide after transplant may prevent this from happening or may make chronic GVHD less severe.
This phase II trial studies how well giving lenalidomide with or without rituximab works in treating patients with progressive or relapsed chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL), prolymphocytic leukemia (PLL), or non-Hodgkin lymphoma (NHL). Biological therapies, such as lenalidomide, may stimulate the immune system in different ways and stop cancer cells from growing. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Giving lenalidomide together with or without rituximab may kill more cancer cells.
This clinical trial studies etoposide, filgrastim and plerixafor in improving stem cell mobilization in patients with non-Hodgkin lymphoma. Giving colony-stimulating factors, such as filgrastim, and plerixafor and etoposide together helps stem cells move from the patient's bone marrow to the blood so they can be collected and stored.
This phase I/II trial studies the side effects and the best dose of veliparib when given together with bendamustine hydrochloride and rituximab and to see how well they work in treating patients with lymphoma, multiple myeloma, or solid tumors that have come back or have not responded to treatment. Veliparib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as bendamustine hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some find cancer cells and help kill them or carry cancer-killing substances to them. Others interfere with the ability of cancer cells to grow and spread. Giving veliparib together with bendamustine hydrochloride and rituximab may kill more cancer cells.
This phase II clinical trial studies how well Akt inhibitor MK2206 works in treating patients with relapsed lymphoma. Akt inhibitor MK2206 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase I clinical trial is studying the side effects and the best dose of lenalidomide after donor bone marrow transplant in treating patients with high-risk hematologic cancer. Biological therapies, such as lenalidomide, may stimulate the immune system in different ways and stop cancer cells from growing.
RATIONALE: Giving high doses of chemotherapy drugs, such as busulfan and cyclophosphamide, before a donor bone marrow transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving cyclosporine, methylprednisolone, and methotrexate after transplant may stop this from happening. PURPOSE: This clinical trial studies high-dose busulfan and high-dose cyclophosphamide followed by donor bone marrow transplant in treating patients with leukemia, myelodysplastic syndrome, multiple myeloma, or recurrent Hodgkin or Non-Hodgkin lymphoma.
RATIONALE: AR-42 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase I trial is studying the side effects and best dose of AR-42 in treating patients with advanced or relapsed multiple myeloma, chronic lymphocytic leukemia, or lymphoma.
RATIONALE: Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Biological therapies, such as lenalidomide, may stimulate the immune system in different ways and stop cancer cells from growing. Giving vorinostat together with lenalidomide may kill more cancer cells. PURPOSE: This phase I trial is studying the side effects and best dose of vorinostat when given together with lenalidomide in treating patients with relapsed or refractory Hodgkin lymphoma or non-Hodgkin lymphoma.
This phase II trial studies giving rituximab before and after a donor peripheral blood stem cell transplant in patients with B-cell lymphoma that does not respond to treatment (refractory) or has come back after a period of improvement (relapsed). Monoclonal antibodies, such as rituximab, can interfere with the ability of cancer cells to grow and spread. Giving rituximab before and after a donor peripheral blood stem cell transplant may help stop cancer from coming back and may help keep the patient's immune system from rejecting the donor's stem cells.
RATIONALE: Biological therapies, such as fusion protein cytokine therapy, may stimulate the immune system in different ways and stop cancer cells from growing. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Giving fusion protein cytokine therapy together with rituximab may kill more cancer cells. PURPOSE: This phase I trial is studying the side effects and best dose of fusion protein cytokine therapy when given after rituximab in treating patients with B-cell non-Hodgkin lymphoma.
This pilot trial studies different high-dose chemotherapy regimens with or without total-body irradiation (TBI) to compare how well they work when given before autologous stem cell transplant (ASCT) in treating patients with hematologic cancer or solid tumors. Giving high-dose chemotherapy with or without TBI before ASCT stops the growth of cancer cells by stopping them from dividing or killing them. After treatment, stem cells are collected from the patient's blood or bone marrow and stored. More chemotherapy may be given to prepare for the stem cell transplant. The stem cells are then returned to the patient to replace the blood forming cells that were destroyed by the chemotherapy.
This phase I trial is studying the side effects and best dose of bevacizumab and cediranib maleate in treating patients with metastatic or unresectable solid tumor, lymphoma, intracranial glioblastoma, gliosarcoma or anaplastic astrocytoma. Monoclonal antibodies, such as bevacizumab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Cediranib maleate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Bevacizumab and cediranib maleate may also stop the growth of cancer cells by blocking blood flow to the cancer. Giving bevacizumab together with cediranib maleate may kill more cancer cells.
This phase II trial is studying the side effects and best dose of alemtuzumab when given together with fludarabine phosphate and total-body irradiation followed by cyclosporine and mycophenolate mofetil in treating patients who are undergoing a donor stem cell transplant for hematologic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate, a monoclonal antibody, such as alemtuzumab, and radiation therapy before a donor stem cell transplant helps stop the growth of cancer cells. Giving chemotherapy or radiation therapy before or after transplant also stops the patient's immune system from rejecting the donor's bone marrow stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil after the transplant may stop this from happening.
Biological therapies, such as MDX-010, work in different ways to stimulate the immune system and stop cancer cells from growing. This phase I/II trial is studying the side effects and best dose of MDX-010 and to see how well it works in treating patients with recurrent or refractory B-cell non-Hodgkin's lymphoma.
This phase II trial is studying how well giving rituximab together with combination chemotherapy and 90-Yttrium ibritumomab tiuxetan works in treating patients with stage I or stage II lymphoma. Drugs used in chemotherapy, such as prednisone, cyclophosphamide, doxorubicin, and vincristine, work in different ways to stop cancer cells from dividing so they stop growing or die. Monoclonal antibodies such as rituximab and yttrium 90-Yttrium ibritumomab tiuxetan can locate cancer cells and either kill them or deliver radioactive cancer-killing substances to them without harming normal cells. Combining a monoclonal antibody with combination chemotherapy and a radiolabeled monoclonal antibody may kill more cancer cells.
This pilot phase II trial studies the side effects and how well giving gemcitabine hydrochloride, carboplatin, dexamethasone, and rituximab together works in treating patients with previously treated lymphoid malignancies. Drugs used in chemotherapy, such as gemcitabine hydrochloride, carboplatin, and dexamethasone, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Giving more than one drug (combination chemotherapy) and giving monoclonal antibody therapy with chemotherapy may kill more cancer cells