Treatment Trials

37 Clinical Trials for Various Conditions

Focus your search

RECRUITING
Selinexor Plus Combination Chemotherapy in Treating Patients With Advanced B Cell Non-Hodgkin Lymphoma
Description

This phase Ib/II trial is aimed at studying the combination of a drug named Selinexor (selective inhibitor of nuclear export) in combination with standard therapy for B cell Non-Hodgkin's lymphoma called R-CHOP. The investigators will establish maximum tolerated dose of Selinexor in combination with RCHOP and also study the efficacy of this combination for therapy of B cell Non-Hodgkin's lymphoma. Giving Selinexor plus chemotherapy may work better in treating patients with B cell non-Hodgkin lymphoma.

ACTIVE_NOT_RECRUITING
Obinutuzumab, Venetoclax, and Lenalidomide in Treating Patients With Relapsed or Refractory B-cell Non-Hodgkin Lymphoma
Description

This phase I study studies the side effects and best dose of venetoclax and lenalidomide when given together with obinutuzumab in treating patients with B-cell non-Hodgkin lymphoma that has returned after a period of improvement or not responding to treatment. Monoclonal antibodies, such as obinutuzumab, may interfere with the ability of cancer cells to grow and spread. Venetoclax may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as lenalidomide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving obinutuzumab, venetoclax, and lenalidomide may work better in treating patients with B-cell non-Hodgkin lymphoma.

COMPLETED
Salvia Hispanica Seed in Reducing Risk of Disease Recurrence in Patients With Non-Hodgkin Lymphoma
Description

This pilot clinical trial studies Salvia hispanica seed in reducing the risk of returning disease (recurrence) in patients with non-Hodgkin lymphoma. Functional foods, such as Salvia hispanica seed, has health benefits beyond basic nutrition by reducing disease risk and promoting optimal health. Salvia hispanica seed contains essential poly-unsaturated fatty acids, including omega 3 alpha linoleic acid and omega 6 linoleic acid; it also contains high levels of antioxidants and dietary soluble fiber. Salvia hispanica seed may raise omega-3 levels in the blood and/or change the bacterial populations that live in the digestive system and reduce the risk of disease recurrence in patients with non-Hodgkin lymphoma.

ACTIVE_NOT_RECRUITING
Memory Enriched T Cells Following Stem Cell Transplant in Treating Patients With Recurrent B-Cell Non-Hodgkin Lymphoma
Description

This phase I trial studies the highest possible dose of memory enriched T cells that can be given following standard stem cell transplant before unmanageable side effects are seen in patients with B-cell non-Hodgkin lymphoma that has returned after previous treatment. A T cell is a type of immune cell that can recognize and kill abnormal cells of the body. Memory enriched T cells will be made from a patient's own T cells that are genetically modified in a laboratory. This means that the T cells are changed by inserting additional pieces of deoxyribonucleic acid (genetic material) into the cell to make it recognize and kill lymphoma cells. Memory enriched T cells may kill the cells that are not killed by stem cell transplant and may lower the chances of the cancer recurring.

COMPLETED
Buparlisib in Treating Patients With Relapsed or Refractory Non-Hodgkin Lymphoma
Description

This pilot clinical trial studies how well buparlisib works in treating patients with non-Hodgkin lymphoma that has returned after a period of improvement or has not responded to previous treatment. Buparlisib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

RECRUITING
Golcadomide and Rituximab as Bridging Therapy for Relapsed or Refractory Aggressive B-cell Non-Hodgkin Lymphoma Before CAR T-cell Therapy
Description

This phase II trial tests the effectiveness of golcadomide and rituximab as bridging treatment before chimeric antigen receptor (CAR) T-cell therapy in patients with aggressive B-cell non-Hodgkin lymphoma that has come back after a period of improvement (relapsed) or that has not responded to previous treatment (refractory). Patients that are able to receive CAR T-cell therapy have a potential for cure, however, many will not be qualified to receive therapy due to relapse. Bridging therapy is therapy intended to transition a patient from one therapy or medication to another or maintain their health or status until they are a candidate for a therapy or have decided on a therapy. Golcadomide may help block the formation, growth or spread of cancer cells. Rituximab is a monoclonal antibody. It binds to a protein called CD20, which is found on B cells (a type of white blood cell) and some types of cancer cells. This may help the immune system kill cancer cells. Giving golcadomide and rituximab as bridging therapy before CAR T-cell therapy may kill more tumor cells and may improve the chance of proceeding to CAR T-cell therapy in patients with relapsed or refractory aggressive B-cell non-Hodgkin lymphoma.

Conditions
Large B-Cell Lymphoma With IRF4 RearrangementRecurrent Aggressive B-Cell Non-Hodgkin LymphomaRecurrent ALK-Positive Large B-Cell LymphomaRecurrent Diffuse Large B-Cell Lymphoma Activated B-Cell TypeRecurrent Diffuse Large B-Cell Lymphoma Associated With Chronic InflammationRecurrent Diffuse Large B-Cell Lymphoma Germinal Center B-Cell TypeRecurrent Diffuse Large B-Cell Lymphoma, Not Otherwise SpecifiedRecurrent EBV-Positive Diffuse Large B-Cell Lymphoma, Not Otherwise SpecifiedRecurrent Grade 3b Follicular LymphomaRecurrent High Grade B-Cell Lymphoma With MYC and BCL2 RearrangementsRecurrent High Grade B-Cell Lymphoma, Not Otherwise SpecifiedRecurrent Intravascular Large B-Cell LymphomaRecurrent Primary Cutaneous Diffuse Large B-Cell Lymphoma, Leg TypeRecurrent Primary Mediastinal Large B-Cell LymphomaRecurrent T-Cell/Histiocyte-Rich Large B-Cell LymphomaRecurrent Transformed Non-Hodgkin LymphomaRefractory Aggressive B-Cell Non-Hodgkin LymphomaRefractory ALK-Positive Large B-Cell LymphomaRefractory Diffuse Large B-Cell Lymphoma Activated B-Cell TypeRefractory Diffuse Large B-Cell Lymphoma Associated With Chronic InflammationRefractory Diffuse Large B-Cell Lymphoma Germinal Center B-Cell TypeRefractory Diffuse Large B-Cell Lymphoma, Not Otherwise SpecifiedRefractory EBV-Positive Diffuse Large B-Cell Lymphoma, Not Otherwise SpecifiedRefractory Grade 3b Follicular LymphomaRefractory High Grade B-Cell Lymphoma With MYC and BCL2 RearrangementsRefractory High Grade B-Cell Lymphoma, Not Otherwise SpecifiedRefractory Intravascular Large B-Cell LymphomaRefractory Primary Cutaneous Diffuse Large B-Cell Lymphoma, Leg TypeRefractory Primary Mediastinal Large B-Cell LymphomaRefractory T-Cell/Histiocyte-Rich Large B-Cell LymphomaRefractory Transformed Non-Hodgkin Lymphoma
RECRUITING
Epcoritamab Plus Ibrutinib for the Treatment of Relapsed or Refractory Aggressive B-Cell Non-Hodgkin Lymphoma
Description

This phase Ib/II trial evaluates the safety, optimal dose, and efficacy of the combination of epcoritamab and ibrutinib in treating patients with aggressive B-cell non-Hodgkin lymphoma that has come back (relapsed) or responded to previous treatment (refractory). Epcoritamab, a bispecific antibody, binds to two different types of receptors (proteins present on the cell surface) at the same time. The two receptors that epcoritamab binds to are called CD3 and CD20. CD3 is found on T cells, which are important cells of the immune system that help fight cancer and infections. CD20 is found on the surface of most types of aggressive B-cell non-Hodgkin lymphoma cells. By binding to both CD3 and CD20, epcoritamab brings the two cells close together so the T cells can fight and kill the lymphoma B cells. Ibrutinib, a Bruton's tyrosine kinase (BTK) inhibitor, binds to a protein on B cells, a type of white blood cell from which the lymphoma developed. By doing this it decreases the ability of the lymphoma B cells to survive and grow. Ibrutinib may also improve the health (or fitness) of T cells thus making epcoritamab safer and/or more effective.

RECRUITING
Zanubrutinib and Lisocabtagene Maraleucel for the Treatment of Richter's Syndrome
Description

This phase II trial tests how well zanubrutinib and lisocabtagene maraleucel (liso-cel) work together in treating patients with Richter's syndrome. Richter's syndrome occurs when chronic lymphocytic leukemia and/or small lymphocytic leukemia transforms into an aggressive lymphoma, which is a cancer of the lymph nodes. Zanubrutinib is a class of medication called a kinase inhibitor. These drugs work by preventing the action of abnormal proteins that tell cancer cells to multiply, which helps stop the spread of cancer. Liso-cel is a type of treatment known as chimeric antigen receptor (CAR) T cell therapy. CAR T-cell therapy is a type of treatment in which a patient's T cells (a type of immune system cell) are changed in the laboratory so they will attack cancer cells. T cells are taken from a patient's blood. Then the gene for a special receptor that binds to a certain protein on the patient's cancer cells is added to the T cells in the laboratory. The special receptor is called a chimeric antigen receptor (CAR). Large numbers of the CAR T cells are grown in the laboratory and given to the patient by infusion for treatment of certain cancers. Giving zanubrutinib and liso-cell together may kill more cancer cells in patients with Richter's syndrome.

RECRUITING
Testing the Safety of the Anti-cancer Drugs Tazemetostat and Belinostat in Patients With Lymphomas That Have Resisted Treatment
Description

This phase I trial tests the safety, side effects, and best dose of combination therapy with tazemetostat and belinostat in treating patients with lymphoma that has come back after a period of improvement (relapsed) or that does not respond to treatment (refractory). Tazemetostat is in a class of medications called EZH2 inhibitors. The EZH2 gene provides instructions for making a type of enzyme called histone methyltransferase which is involved in gene expression and cell division. Blocking EZH2 may help keep cancer cells from growing. Belinostat is in a class of medications called histone deacetylase inhibitors. Histone deacetylases are enzymes needed for cell division. Belinostat may kill cancer cells by blocking histone deacetylase. It may also prevent the growth of new blood vessels that tumors need to grow and may help make cancer cells easier to kill with other anticancer drugs. There is some evidence in animals and in living human cells that combination therapy with tazemetostat and belinostat can shrink or stabilize cancer, but it is not known whether this will happen in people. This trial may help doctors learn more about treatment of patients with relapsed or refractory lymphoma.

RECRUITING
Genetically Modified T-cells (CMV-Specific CD19-CAR T-cells) Plus a Vaccine (CMV-MVA Triplex) Following Stem Cell Transplantation for the Treatment of Intermediate or High Grade B-cell Non-Hodgkin Lymphoma
Description

This phase I trial studies the safety and side effects of cytomegalovirus (CMV) specific CD19-chimeric antigen receptor (CAR) T-cells along with the CMV-modified vaccinia Ankara (MVA) triplex vaccine following a stem cell transplant in treating patients with high grade B-cell non-Hodgkin lymphoma. CAR T-cells are a type of treatment in which a patient's T-cells (a type of immune system cell) are changed in the laboratory so they will attack cancer cells. T-cells are taken from a patient's blood. Then the gene for a special receptor that binds to a certain protein on the patient's cancer cells is added in the laboratory. The special receptor is called a chimeric antigen receptor (CAR). Large numbers of the CAR T-cells are grown in the laboratory and given to the patient by infusion. Vaccines such as CMV-MVA triplex are made from gene-modified viruses and may help the body build an effective immune response to kill cancer cells. Giving CMV-specific CD19-CAR T-cells plus the CMV-MVA triplex vaccine following a stem cell transplant may help prevent the cancer from coming back.

ACTIVE_NOT_RECRUITING
Testing the Addition of an Immunotherapy Agent, Atezolizumab, When Given With the Usual Chemo-Immunotherapy Drug Combination (Rituximab Plus Gemcitabine and Oxaliplatin) for Relapsed/Refractory (That Has Come Back or Not Responded to Treatment) Transformed Diffuse Large B-Cell Lymphoma
Description

This pilot phase I trial studies the side effects of atezolizumab, gemcitabine, oxaliplatin, and rituximab and to see how well they work in treating patients with transformed diffuse large B-cell lymphoma that has come back (relapsed) or does not respond to treatment (refractory). Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as gemcitabine and oxaliplatin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Rituximab is a monoclonal antibody. It binds to a protein called CD20, which is found on B cells (a type of white blood cell) and some types of cancer cells. This may help the immune system kill cancer cells. Giving atezolizumab, gemcitabine, oxaliplatin, and rituximab may work better in treating patients with transformed diffuse large B-cell lymphoma.

ACTIVE_NOT_RECRUITING
Pembrolizumab and Vorinostat in Patients With Relapsed or Refractory DLBCL, FCL or HL.
Description

This phase I trial studies the side effects and best dose of vorinostat when given together with pembrolizumab in treating patients with diffuse large B-cell lymphoma, follicular lymphoma, or Hodgkin lymphoma that has come back after a period of improvement or that does not respond to treatment. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer and may interfere with the ability of cancer cells to grow and spread. Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving vorinostat and pembrolizumab together may work better than pembrolizumab alone in treating patients with diffuse large B-cell lymphoma, follicular lymphoma, or Hodgkin lymphoma.

TERMINATED
huJCAR014 CAR-T Cells in Treating Adult Patients With Relapsed or Refractory B-Cell Non-Hodgkin Lymphoma or Acute Lymphoblastic Leukemia
Description

This phase I trial studies the side effects of huJCAR014 in treating patients with relapsed or refractory B-cell non-Hodgkin lymphoma or acute lymphoblastic leukemia. huJCAR014 CAR-T cells are made in the laboratory by genetically modifying a patient's T cells and may specifically kill cancer cells that have a molecule CD19 on their surfaces. In Stage 1, dose-finding studies will be conducted in 3 cohorts: 1. Aggressive B cell NHL 2. Low burden ALL 3. High burden ALL In Stage 2, studies may be conducted in one or more cohorts to collect further safety, PK, and efficacy information at the huJCAR014 dose level(s) selected in Stage 1 for the applicable cohort(s). There are two separate cohorts for stage 2: 1. Cohort 2A, CAR-naïve (n=10): patients who have never received CD19 CAR-T cell therapy. 2. Cohort 2B, CAR-exposed (n=27): patients who have previously failed CD19 CAR-T cell therapy.

ACTIVE_NOT_RECRUITING
R-ICE and Lenalidomide in Treating Patients With First-Relapse/Primary Refractory Diffuse Large B-Cell Lymphoma
Description

This phase I/II trial studies the side effects and best dose of lenalidomide when given together with rituximab-ifosfamide-carboplatin-etoposide (R-ICE) and to see how well they work in treating patients with diffuse large B-cell lymphoma that has returned after a period of improvement (relapsed) and that has not responded to previous treatment (refractory). Drugs used in chemotherapy, such as rituximab, ifosfamide, carboplatin, etoposide, and lenalidomide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving lenalidomide with R-ICE may be a better treatment for patients with diffuse large B-cell lymphoma.

TERMINATED
Phase 2 Study of AT13387 (Onalespib) in ALK+ ALCL, MCL, and BCL-6+ DLBCL
Description

This phase II trial studies how well onalespib works in treating patients with anaplastic large cell lymphoma, mantle cell lymphoma, or diffuse large B-cell lymphoma that has not responded to previous treatment (refractory) or that has returned after a period of improvement (recurrent). Onalespib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

COMPLETED
Lenalidomide Therapy After Chemotherapy & Stem Cell Transplant in Treating Chemotherapy Resistan Non-Hodgkin Lymphoma
Description

This phase I/II trial studies the side effects and best dose of lenalidomide when given after combination chemotherapy with or without rituximab and stem cell transplant and to see how well it works in treating patients with non-Hodgkin lymphoma that has not responded to treatment or has returned after a period of improvement and is resistant to chemotherapy. Biological therapies, such as lenalidomide, may stimulate the immune system in different ways and stop cancer cells from growing. Drugs used in chemotherapy, such as carmustine, etoposide, cytarabine, and melphalan, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as rituximab, may block cancer growth by targeting certain cells. Giving lenalidomide after combination chemotherapy with or without rituximab may work better in treating patients with non-Hodgkin lymphoma.

COMPLETED
Ibrutinib in Treating Patients With Relapsed or Refractory Transformed Indolent B-cell Non-Hodgkin Lymphoma
Description

This pilot phase II trial studies ibrutinib in treating patients with transformed indolent (a type of cancer that grows slowly) B-cell non-Hodgkin lymphoma that have returned after a period of improvement (relapsed) or do not respond to treatment (refractory). Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes (proteins) needed for cell growth.

ACTIVE_NOT_RECRUITING
Zanubrutinib and CAR T-cell Therapy for the Treatment of Recurrent or Refractory Aggressive B-cell Non-Hodgkin's Lymphoma or Transformed Indolent B-cell Lymphoma
Description

This phase II trial studies the effect of zanubrutinib and CAR T-cell therapy in treating patients with aggressive B-cell non-Hodgkin's lymphoma or transformed indolent B-cell lymphoma that has come back (recurrent) or does not respond to treatment (refractory). Zanubrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. T cells are infection fighting blood cells that can kill tumor cells. The T cells given in this study will come from the patient and will have a new gene put in them that makes them able to recognize CAR, a protein on the surface of cancer cells. These CAR-specific T cells may help the body's immune system identify and kill cancer cells. Giving zanubrutinib together with CAR T-cell therapy may kill more cancer cells.

RECRUITING
Immune Cell Therapy (CAR-T) for the Treatment of Patients With HIV and B-Cell Non-Hodgkin Lymphoma
Description

This phase I trial evaluates the side effects and usefulness of axicabtagene clioleucel (a CAR-T therapy) and find out what effect, if any, it has on treating patients with HIV-associated aggressive B-cell non-Hodgkin lymphoma that has come back (relapsed) or not responded to treatment (refractory). T cells are infection fighting blood cells that can kill tumor cells. Axicabtagene ciloleucel consists of genetically modified T cells, modified to recognize CD-19, a protein on the surface of cancer cells. These CD-19-specific T cells may help the body's immune system identify and kill CD-19-positive B-cell non-Hodgkin lymphoma cells.

ACTIVE_NOT_RECRUITING
Polatuzumab Vedotin, Rituximab, Ifosfamide, Carboplatin, and Etoposide (PolaR-ICE) as Initial Salvage Therapy for the Treatment of Relapsed/Refractory Diffuse Large B-Cell Lymphoma
Description

This phase II trial studies the effect of polatuzumab vedotin, rituximab, ifosfamide, carboplatin, and etoposide as initial salvage therapy in treating patients with diffuse large B-cell lymphoma that has come back (relapsed) or does not respond to treatment (refractory). Polatuzumab vedotin is a monoclonal antibody, polatuzumab, linked to a toxic agent called vedotin. Polatuzumab attaches to CD79b positive cancer cells in a targeted way and delivers vedotin to kill them. Rituximab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Chemotherapy drugs, such as ifosfamide, carboplatin, and etoposide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy with immunotherapy may kill more cancer cells in patients with diffuse large B-cell lymphoma.

COMPLETED
Mogamulizumab and Pembrolizumab in Treating Patients With Relapsed or Refractory Diffuse Large B Cell Lymphoma
Description

This phase I/II trial studies the best dose and side effects of mogamulizumab in combination with pembrolizumab and to see how well they work in treating patients with diffuse large B cell lymphoma that have come back after a period of improvement (relapsed) or does not respond to treatment (refractory). Immunotherapy with monoclonal antibodies, such as mogamulizumab and pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.

NOT_YET_RECRUITING
Odronextamab for Relapsed and Refractory Large B-cell Lymphomas Before CAR-T
Description

This phase II trial tests the effectiveness of odronextamab given before chimeric antigen receptor T (CAR-T) cell therapy (bridging therapy) in patients with large B-cell lymphomas that have come back after a period of improvement (relapsed) or that have not responded to previous treatment (refractory). Odronextamab is a bispecific antibody that can bind to two different antigens at the same time. Odronextamab binds to CD3, a T-cell surface antigen, and CD20 (a tumor-associated antigen that is expressed on B-cells during most stages of B-cell development and is often overexpressed in B-cell cancers) and may interfere with the ability of cancer cells to grow and spread. Bridging therapy has been used to maintain disease control and to increase the chance of successful receipt of CAR-T cell therapy. However, bridging therapy is typically given after leukapheresis, which does not help prevent disease progression between the decision for CAR-T cell therapy and leukapheresis. Giving odronextamab as bridging therapy before leukapheresis may delay disease progression to allow leukapheresis and increase the likelihood of successful CAR-T cell therapy in patients with relapsed or refractory large B-cell lymphomas.

RECRUITING
Loncastuximab Tesirine and Mosunetuzumab for the Treatment of Relapsed or Refractory Diffuse Large B-Cell Lymphoma
Description

This phase II trial studies the safety and how well of loncastuximab tesirine when given together with mosunetuzumab works in treating patients with diffuse large B-cell lymphoma that has come back (relapsed) or does not respond to treatment (refractory). Loncastuximab tesirine is a monoclonal antibody, loncastuximab, linked to a toxic agent called tesirine. Loncastuximab attaches to anti-CD19 cancer cells in a targeted way and delivers tesirine to kill them. Mosunetuzumab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Giving loncastuximab tesirine with mosunetuzumab may help treat patients with relapsed or refractory diffuse large B-cell lymphoma.

RECRUITING
Genetically Engineered Cells (Anti-CD19/CD20/CD22 CAR T-cells) for the Treatment of Relapsed or Refractory Lymphoid Malignancies
Description

This phase I trial tests the safety, side effects and best infusion dose of genetically engineered cells called anti-CD19/CD20/CD22 chimeric antigen receptor (CAR) T-cells following a short course of chemotherapy with cyclophosphamide and fludarabine in treating patients with lymphoid cancers (malignancies) that have come back (recurrent) or do not respond to treatment (refractory). Lymphoid malignancies eligible for this trial are: non-Hodgkin lymphoma (NHL), acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), and B-prolymphocytic leukemia (B-PLL). T-cells (a type of white blood cell) form part of the body's immune system. CAR-T is a type of cell therapy that is used with gene-based therapies. CAR T-cells are made by taking a patient's own T-cells and genetically modifying them with a virus so that they are recognized by a group of proteins called CD19/CD20/CD22 which are found on the surface of cancer cells. Anti-CD19/CD20/CD22 CAR T-cells can recognize CD19/CD20/CD22, bind to the cancer cells and kill them. Giving combination chemotherapy helps prepare the body before CAR T-cell therapy. Giving CAR-T after cyclophosphamide and fludarabine may kill more tumor cells.

COMPLETED
Venetoclax, Carmustine, Etoposide, Cytarabine, and Melphalan Before Stem Cell Transplant in Treating Participants With Relapsed or Refractory Non-Hodgkin Lymphoma
Description

This phase I/II trial studies the side effects and best dose of venetoclax when given together with carmustine, etoposide, cytarabine, and melphalan before stem cell transplant in treating participants with non-Hodgkin lymphoma that has come back or does not respond to treatment. Drugs used in chemotherapy, such as venetoclax, carmustine, etoposide, cytarabine, and melphalan, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy before a stem cell transplant helps kill any cancer cells that are in the body and helps make room in the patient?s bone marrow for new blood-forming cells (stem cells) to grow.

ACTIVE_NOT_RECRUITING
Pembrolizumab and External Beam Radiation Therapy in Treating Patients With Relapsed or Refractory Non-Hodgkin Lymphoma
Description

This phase II trial studies how well pembrolizumab and external beam radiation therapy work in treating patients with non-Hodgkin lymphoma that has come back (relapsed) or does not respond to treatment (refractory). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving pembrolizumab and external beam radiation therapy may work better in treating patients with non-Hodgkin lymphoma than pembrolizumab alone.

RECRUITING
B-Cell Activating Factor Receptor (BAFFR)-Based Chimeric Antigen Receptor T-Cells With Fludarabine and Cyclophosphamide Lymphodepletion for the Treatment of Relapsed or Refractory B-cell Hematologic Malignancies
Description

This phase I trial tests safety, side effects and best dose of B-cell activating factor receptor (BAFFR)-based chimeric antigen receptor T-cells, with fludarabine and cyclophosphamide lymphodepletion, for the treatment of patients with B-cell hematologic malignancies that has come back after a period of improvement (relapsed) or that does not respond to treatment (refractory). BAFFR-based chimeric antigen receptor T-cells is a type of treatment in which a patient's T cells (a type of immune system cell) are changed in the laboratory so they will attack cancer cells. T cells are taken from a patient's blood. Then the gene for a special receptor that binds to a certain protein on the patient's cancer cells is added to the T cells in the laboratory. The special receptor is called a chimeric antigen receptor (CAR). Large numbers of the CAR T cells are grown in the laboratory and given to the patient by infusion for treatment of certain cancers. Giving chemotherapy, such as fludarabine and cyclophosphamide, helps ill cancer cells in the body and helps prepare the body to receive the BAFFR based chimeric antigen receptor T-cells. Giving BAFFR based chimeric antigen receptor T-cells with fludarabine and cyclophosphamide for lymphodepletion may work better for the treatment of patients with relapsed or refractory B-cell hematologic malignancies.

RECRUITING
CD19-Directed CAR-T Cell Therapy for the Treatment of Relapsed/Refractory B Cell Malignancies
Description

This phase I trial studies the effects of CD-19 directed chimeric antigen receptor (CAR)-T cell therapy for the treatment of patients with B cell malignancies that have come back (recurrent) or have not responded to treatment (refractory). CD-19 CAR-T cells use some of a patient's own immune cells, called T cells, to kill cancer. T cells fight infections and, in some cases, can also kill cancer cells. Some T cells are removed from the blood, and then laboratory, researchers will put a new gene into the T cells. This gene allows the T cells to recognize and possibly treat cancer. The new modified T cells are called the IC19/1563 treatment. IC19/1563 may help treat patients with relapsed/refractory B cell malignancies.

RECRUITING
Cardiovascular Events Among Adults Patients With Relapsed or Refractory Aggressive B-Cell Lymphoma Treated With Standard of Care Chimeric Antigen Receptor T Cell Therapy
Description

This study characterizes cardiac events following standard of care chimeric antigen receptor T cell therapy in patients with aggressive B-Cell Lymphoma that has come back (relapsed) or does not respond to treatment (refractory). The results from this study may allow a description of these events, their managements and outcome.