8 Clinical Trials for Various Conditions
To determine if there is a relationship between people with open fractures and the season and location of where the injury occurred and the infections they develop
The military is subject to traumatic wounds of various types and severity. Such wounds are predisposed to infection because they 1) tend to be extensive and deep, 2) may affect areas of normal carriage of potentially pathogenic bacteria in the gastrointestinal tract, upper respiratory tract, and the female genital tract, 3) typically produce tissue damage, 4) may introduce foreign bodies, 5) may interfere with local blood supply, 6) tend to produce ischemia, edema and hemorrhage, 7) may be complicated by fractures or burns and 8) may lead to shock and overwhelming of the body's systemic defenses. It will not always be possible in the military setting to cleanse and debride the wound promptly and effectively or to promptly provide surgery in the event of damage to vital structures. In the active military setting, the probability of wound infection following trauma is relatively high. In the absence of rapid identification of infecting flora and provision of information on antimicrobial susceptibility, clinicians must resort to empiric therapy rather than a tailored therapy. There is a tendency to use one of the top available agents that would likely be active against the vast majority of bacteria. This leads to increases in antimicrobial resistance, an important problem. The investigators hypothesize that the use of molecular biology techniques will provide identification of the microorganisms responsible for wound infection more rapidly and accurately. The investigators will evaluate real-time PCR (polymerase chain reaction) technique under this proposal. This procedure can be applied directly to material from the wound without need for first growing the organisms. It can be used to define the total flora of the wound within five hours. The investigators will first develop primers and probes that will detect the various bacteria anticipated in a given wound in a certain location. These primers and probes will be used in real-time PCR for rapid and accurate identification of the wound flora. The information obtained with real-time PCR is quantitative so that one may judge the relative importance of different isolates. The investigators will also use another molecular approach, 16S rRNA gene cloning, and conventional cultures; these will provide further information about the flora of various wounds. Definitive identification of anaerobes can be provided quickly and that, along with information on usual antimicrobial susceptibility patterns, can be life-saving or shorten the course of the infection considerably.
Enhancing Wound Perfusion in High-Risk Lower Extremity Orthopaedic Surgery: A Feasibility Study on Nitropaste Using Intraoperative SPY Imaging.
The purpose of this study is to examine the immune response to traumatic injury and subsequent infections in critically ill adults. Traumatic injuries lead to severe dysregulation of the immune system, and predispose to severe infections. Diagnosing these infections in a timely manner is paramount in reducing morbidity and mortality, but diagnosis is made difficult by the inflammatory response to trauma. The main purpose of the study is to prospectively test the diagnostic power of the expression of an 11-gene set which the investigators recently published (Sweeney et al., Sci Transl Med, 2015). Since the timing of an acquired infection cannot be determined a priori, this study is designed to be a longitudinal examination of a cohort of traumatically injured adults. The investigators will draw blood at regular intervals, as well as at day of diagnosis of infection for any patient that are diagnosed with an infection. The investigators will then assay the blood for gene expression levels post hoc, and correlate the molecular profiles with clinical information to establish a prospective estimate of diagnostic power.
The proposed study will be a prospective trial of management of acute traumatic wounds (less than 24 hours from injury and without previous intervention aside from a dressing for coverage). The study design involves a prospective single arm, 35 subject study that analyzes the effect of the subsequent application of a novel wound cleanser and wound gel on subjects' acute traumatic wounds and the respective microbial loads over a 28 day study duration.
This will be a multistate, multicenter clinical study to determine the efficacy and safety of medical cannabis for a wide variety of chronic medical conditions.
The purpose of this study is to see what effects sacral neuromodulation has on bladder function and quality of life in patients with acute spinal cord injury. Within 12-weeks of injury, participants will either receive an implanted nerve stimulator (like a pace-maker for the bladder) or standard care for neurogenic bladder. Patients will be assigned to one of these groups at random and followed for one year. The hypothesis is that early stimulation of the nerves will help prevent the development of neurogenic bladder.
The focus of this prospective observational study is to (1) establish the range and variation associated with bone/soft tissue perfusion in fracture patients, using ICG fluorescence imaging; (2) examine the relationship between perfusion and complications such as surgical site infection (SSI), persistent SSI, and fracture nonunion; (3) to determine whether the quantitative ICG fluorescence can be used to guide bony debridement in the setting of infected fracture to minimize complications.