Treatment Trials

10 Clinical Trials for Various Conditions

Focus your search

TERMINATED
Assessment of Adjunctive Cannabidiol Oral Solution (GWP42003-P) in Children With Tuberous Sclerosis Complex (TSC), Dravet Syndrome (DS), or Lennox-Gastaut Syndrome (LGS) Who Experience Inadequately-controlled Seizures
Description

This study will be conducted to evaluate the safety, pharmacokinetics (PK), and efficacy of adjunctive GWP42003-P in participants \< 2 years of age with tuberous sclerosis complex (TSC), Lennox-Gastaut syndrome (LGS), or Dravet syndrome (DS).

ACTIVE_NOT_RECRUITING
Phase 2 Basket Trial of Nab-sirolimus in Patients With Malignant Solid Tumors With Pathogenic Alterations in TSC1/TSC2 Genes (PRECISION 1)
Description

A Phase 2 multi-center open-label basket trial of nab-sirolimus for adult and adolescent patients with malignant solid tumors harboring pathogenic inactivating alterations in TSC1 or TSC2 genes

COMPLETED
Stopping TSC Onset and Progression 2: Epilepsy Prevention in TSC Infants
Description

This phase I/II clinical trial is an open-label clinical trial design to verify safety and dosing for TAVT-18 (sirolimus) powder for oral solution in TSC infants (N=5).

COMPLETED
A Phase 2, Multicenter, Randomized, Double-blind, Placebo-controlled Study to Evaluate the Efficacy, Safety, and Tolerability of TAK-935 (OV935) as an Adjunctive Therapy in Pediatric Participants With Developmental and/or Epileptic Encephalopathies
Description

The purpose of this study is to investigate the effect on the frequency of all seizures (convulsive and drop) in participants treated with TAK-935 compared to placebo.

COMPLETED
A Placebo-controlled Study of Efficacy & Safety of 2 Trough-ranges of Everolimus as Adjunctive Therapy in Patients With Tuberous Sclerosis Complex (TSC) & Refractory Partial-onset Seizures
Description

This study evaluated the efficacy and safety of two trough-ranges of everolimus given as adjunctive therapy in patients with tuberous sclerosis complex (TSC) who had refractory partial-onset seizures. The study consisted of 4 phases for each patient Baseline phase:\[From Screening Week -8 (V1) to randomization visit at Week 0 (V2)\], Core phase \[from randomization at Week 0 (V2) to Week 18 (V11)\], Extension phase \[from Week 18 (V11) until 48 weeks after the last patient had completed the core phase\] and Post Extension phase \[from end of Extension phase to end of study\].

RECRUITING
Stopping TSC Onset and Progression 2B: Sirolimus TSC Epilepsy Prevention Study
Description

This trial is a Phase II randomized, double-blind, placebo controlled multi-site study to evaluate the safety and efficacy of early sirolimus to prevent or delay seizure onset in TSC infants. This study is supported by research funding from the Office of Orphan Products Division (OOPD) of the US Food and Drug Administration (FDA).

RECRUITING
Web Intervention for Parents of Youth With Genetic Syndromes (WINGS)
Description

The purpose of this study is to evaluate the effectiveness of an adapted, telehealth functional behavioral therapy (FBTsIDD) specifically focused on promoting appropriate communication and behavioral strategies in individuals with syndromic intellectual and developmental disorders. Participants will be asked to complete virtual study assessments at intake and then on a monthly basis for the duration of 3-6 months. In addition, participants will attend weekly or biweekly virtual intervention visits with a study therapist.

ENROLLING_BY_INVITATION
Parent and Infant Inter(X)Action Intervention (PIXI)
Description

The objective is to develop and test, through an iterative process, an intervention to address and support the development of infants with a confirmed diagnosis of a neurogenetic disorder with associated developmental delays or intellectual and developmental disabilities. The proposed project will capitalize and expand upon existing empirically based interventions designed to improve outcomes for infants with suspected developmental delays. Participants will be infants with a confirmed diagnosis of a neurogenetic disorder (e.g., fragile X, Angelman, Prader-Willi, Dup15q, Phelan-McDermid, Rhett, Smith Magenis, Williams, Turner, Kleinfelter, Down syndromes, Duchenne muscular dystrophy) within the first year of life and their parents/caregivers. The intervention, called the Parent and Infant Inter(X)action Intervention (PIXI) is a comprehensive program inclusive of parent education about early infant development and the neurogenetic disorder for which they were diagnosed, direct parent coaching around parent-child interaction, and family/parent well-being support. The protocol includes repeated comprehensive assessments of family and child functioning, along with an examination of feasibility and acceptability of the program.

RECRUITING
Familial Investigations of Childhood Cancer Predisposition
Description

NOTE: This is a research study and is not meant to be a substitute for clinical genetic testing. Families may never receive results from the study or may receive results many years from the time they enroll. If you are interested in clinical testing please consider seeing a local genetic counselor or other genetics professional. If you have already had clinical genetic testing and meet eligibility criteria for this study as shown in the Eligibility Section, you may enroll regardless of the results of your clinical genetic testing. While it is well recognized that hereditary factors contribute to the development of a subset of human cancers, the cause for many cancers remains unknown. The application of next generation sequencing (NGS) technologies has expanded knowledge in the field of hereditary cancer predisposition. Currently, more than 100 cancer predisposing genes have been identified, and it is now estimated that approximately 10% of all cancer patients have an underlying genetic predisposition. The purpose of this protocol is to identify novel cancer predisposing genes and/or genetic variants. For this study, the investigators will establish a Data Registry linked to a Repository of biological samples. Health information, blood samples and occasionally leftover tumor samples will be collected from individuals with familial cancer. The investigators will use NGS approaches to find changes in genes that may be important in the development of familial cancer. The information gained from this study may provide new and better ways to diagnose and care for people with hereditary cancer. PRIMARY OBJECTIVE: * Establish a registry of families with clustering of cancer in which clinical data are linked to a repository of cryopreserved blood cells, germline DNA, and tumor tissues from the proband and other family members. SECONDARY OBJECTIVE: * Identify novel cancer predisposing genes and/or genetic variants in families with clustering of cancer for which the underlying genetic basis is unknown.

ENROLLING_BY_INVITATION
Early Check: Expanded Screening in Newborns
Description

Early Check provides voluntary screening of newborns for a selected panel of conditions. The study has three main objectives: 1) develop and implement an approach to identify affected infants, 2) address the impact on infants and families who screen positive, and 3) evaluate the Early Check program. The Early Check screening will lead to earlier identification of newborns with rare health conditions in addition to providing important data on the implementation of this model program. Early diagnosis may result in health and development benefits for the newborns. Infants who have newborn screening in North Carolina will be eligible to participate, equating to over 120,000 eligible infants a year. Over 95% of participants are expected to screen negative. Newborns who screen positive and their parents are invited to additional research activities and services. Parents can enroll eligible newborns on the Early Check electronic Research Portal. Screening tests are conducted on residual blood from existing newborn screening dried blood spots. Confirmatory testing is provided free-of-charge for infants who screen positive, and carrier testing is provided to mothers of infants with fragile X. Affected newborns have a physical and developmental evaluation. Their parents have genetic counseling and are invited to participate in surveys and interviews. Ongoing evaluation of the program includes additional parent interviews.

Conditions
Spinal Muscular AtrophyFragile X SyndromeFragile X - PremutationDuchenne Muscular DystrophyHyperinsulinemic Hypoglycemia, Familial 1Diabetes MellitusAdrenoleukodystrophy, NeonatalMedium-chain Acyl-CoA Dehydrogenase DeficiencyVery Long Chain Acyl Coa Dehydrogenase DeficiencyBeta-ketothiolase DeficiencySevere Combined Immunodeficiency Due to Adenosine Deaminase DeficiencyPrimary Hyperoxaluria Type 1Congenital Bile Acid Synthesis Defect Type 2Pyridoxine-Dependent EpilepsyHereditary Fructose IntoleranceHypophosphatasiaHyperargininemiaMucopolysaccharidosis Type 6Argininosuccinic AciduriaCitrullinemia, Type IWilson DiseaseMaple Syrup Urine Disease, Type 1AMaple Syrup Urine Disease, Type 1BBiotinidase DeficiencyNeonatal Severe Primary HyperparathyroidismIntrinsic Factor DeficiencyUsher Syndrome Type 1D/F Digenic (Diagnosis)Cystic FibrosisStickler Syndrome Type 2Stickler Syndrome Type 1Alport Syndrome, Autosomal RecessiveAlport Syndrome, X-LinkedCarbamoyl Phosphate Synthetase I Deficiency DiseaseCarnitine Palmitoyl Transferase 1A DeficiencyCarnitine Palmitoyltransferase II DeficiencyCystinosisChronic Granulomatous DiseaseCerebrotendinous XanthomatosesMaple Syrup Urine Disease, Type 2Severe Combined Immunodeficiency Due to DCLRE1C DeficiencyThyroid Dyshormonogenesis 6Thyroid Dyshormonogenesis 5Supravalvar Aortic StenosisFactor X DeficiencyHemophilia AHemophilia BTyrosinemia, Type IFructose 1,6 Bisphosphatase DeficiencyGlycogen Storage Disease Type IG6PD DeficiencyGlycogen Storage Disease IIGalactokinase DeficiencyMucopolysaccharidosis Type IV AGalactosemiasGuanidinoacetate Methyltransferase DeficiencyAgat DeficiencyGlutaryl-CoA Dehydrogenase DeficiencyGtp Cyclohydrolase I DeficiencyHyperinsulinism-Hyperammonemia SyndromePrimary Hyperoxaluria Type 23-Hydroxyacyl-CoA Dehydrogenase DeficiencyLong-chain 3-hydroxyacyl-CoA Dehydrogenase DeficiencyMitochondrial Trifunctional Protein DeficiencySickle Cell DiseaseBeta-ThalassemiaHolocarboxylase Synthetase Deficiency3-Hydroxy-3-Methylglutaric AciduriaPrimary Hyperoxaluria Type 3Hermansky-Pudlak Syndrome 1Hermansky-Pudlak Syndrome 4Apparent Mineralocorticoid ExcessHSDBCBAS1Mucopolysaccharidosis Type 2Mucopolysaccharidosis Type 1Severe Combined Immunodeficiency, X LinkedSevere Combined Immunodeficiency Due to IL-7Ralpha DeficiencyDiabetes Mellitus, Permanent NeonatalIsovaleric AcidemiaSevere Combined Immunodeficiency T-Cell Negative B-Cell Positive Due to Janus Kinase-3 Deficiency (Disorder)Jervell and Lange-Nielsen Syndrome 2Hyperinsulinemic Hypoglycemia, Familial, 2Diabetes Mellitus, Permanent Neonatal, With Neurologic FeaturesJervell and Lange-Nielsen Syndrome 1Lysosomal Acid Lipase DeficiencyCblF3-Methylcrotonyl CoA Carboxylase 1 Deficiency3-Methylcrotonyl CoA Carboxylase 2 DeficiencyWaardenburg Syndrome Type 2AMethylmalonic Aciduria cblA TypeMethylmalonic Aciduria cblB TypeMethylmalonic Aciduria and Homocystinuria Type cblCMAHCDMethylmalonic Aciduria Due to Methylmalonyl-CoA Mutase DeficiencyCongenital Disorder of Glycosylation Type 1BMthfr DeficiencyMethylcobalamin Deficiency Type Cbl G (Disorder)Methylcobalamin Deficiency Type cblEUsher Syndrome, Type 1BN-acetylglutamate Synthase DeficiencyOrnithine Transcarbamylase DeficiencyPhenylketonuriasWaardenburg Syndrome Type 1Congenital HypothyroidismPropionic AcidemiaUsher Syndrome, Type 1FPancreatic Agenesis 1Hereditary Hypophosphatemic RicketsGlycogen Storage Disease IXBGlycogen Storage Disease IXCMOWSEpilepsy, Early-Onset, Vitamin B6-DependentPyridoxal Phosphate-Responsive SeizuresPituitary Hormone Deficiency, Combined, 1PtsdDihydropteridine Reductase DeficiencySevere Combined Immunodeficiency Due to RAG1 DeficiencySevere Combined Immunodeficiency Due to RAG2 DeficiencyRetinoblastomaMultiple Endocrine Neoplasia Type 2BPseudohypoaldosteronism, Type ILiddle SyndromeBiotin-Responsive Basal Ganglia DiseaseSCDDIAR1GSD1CAcrodermatitis EnteropathicaThyroid Dyshormonogenesis 1Riboflavin Transporter DeficiencyWaardenburg Syndrome, Type 2ESRDCongenital Lipoid Adrenal Hyperplasia Due to STAR DeficiencyBarth SyndromeAdrenocorticotropic Hormone DeficiencyTranscobalamin II DeficiencyThyroid Dyshormonogenesis 3Segawa Syndrome, Autosomal RecessiveAutosomal Recessive Nonsyndromic Hearing LossThyroid Dyshormonogenesis 2ACongenital Isolated Thyroid Stimulating Hormone DeficiencyHypothyroidism Due to TSH Receptor MutationsUsher Syndrome Type 1CUsher Syndrome Type 1G (Diagnosis)Von Willebrand Disease, Type 3Combined Immunodeficiency Due to ZAP70 DeficiencyAdenine Phosphoribosyltransferase DeficiencyMetachromatic LeukodystrophyCanavan DiseaseMenkes DiseaseCarbonic Anhydrase VA DeficiencyDevelopmental and Epileptic Encephalopathy 217 Alpha-Hydroxylase DeficiencySmith-Lemli-Opitz SyndromeKrabbe DiseaseGlutathione Synthetase DeficiencyMucopolysaccharidosis Type 7Rett SyndromeMolybdenum Cofactor Deficiency, Type ANiemann-Pick Disease, Type C1Niemann-Pick Disease Type C2Ornithine Aminotransferase Deficiency3-Phosphoglycerate Dehydrogenase DeficiencyLeber Congenital Amaurosis 2Dravet SyndromeMucopolysaccharidosis Type 3 AOrnithine Translocase DeficiencyCarnitine-acylcarnitine Translocase DeficiencyGlucose Transporter Type 1 Deficiency SyndromeCreatine Transporter DeficiencyNiemann-Pick Disease Type APitt Hopkins SyndromeTuberous Sclerosis 1Tuberous Sclerosis 2Ataxia With Isolated Vitamin E DeficiencyAngelman SyndromePrader-Willi SyndromeHomocystinuriaPermanent Neonatal Diabetes MellitusTransient Neonatal Diabetes MellitusFactor VII DeficiencyGlycogen Storage Disease Type IXA1Glycogen Storage Disease, Type IXA2Glycogen Storage Disease ICGlycogen Storage Disease Type IBCentral Hypoventilation Syndrome With or Without Hirschsprung Disease