21 Clinical Trials for Various Conditions
The purpose of this research study is to see if a high dose of ascorbate (Vitamin C), in combination with the chemotherapy drug gemcitabine, is safe and effective in adolescents with locally advanced unresectable or metastatic soft tissue and bone sarcomas
This randomized phase II trial studies how well nivolumab with or without ipilimumab works in treating patients with sarcoma that has spread from the primary site to other parts of the body (metastatic) or cannot be removed by surgery (unresectable). Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. It is not yet known whether nivolumab works better with or without ipilimumab in treating patients with metastatic or unresectable sarcoma.
This phase II trial studies the effect of atezolizumab and cabozantinib in treating adolescents and young adults with osteosarcoma that has come back (recurrent) or has spread to other places in the body (metastatic). Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Cabozantinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving atezolizumab and cabozantinib may help to control the osteosarcoma.
The purpose of this Phase II study will assess the effectiveness of the combination of oral cyclophosphamide and sirolimus in sarcoma patients with relapsed or widespread disease who cannot be cured by surgery, radiation or conventional chemotherapy.
This phase I trial evaluates the safety and effectiveness of in situ immunomodulation with CDX-301, radiotherapy, CDX-1140 and Poly-ICLC (Cohort A) and these with intravenous (IV) pembrolizumab and subcutaneous (SC) tocilizumab (Cohort B) in treating patients with unresectable and measurable metastatic melanoma, cutaneous squamous cell carcinoma (SCC), basal cell carcinoma (BCC), Merkel cell carcinoma, high-grade bone and soft tissue sarcoma or HER2/neu(-) breast cancer. CDX-301 may induce cross-presenting dendritic cells, master regulators in the immune system. Radiation therapy uses high energy to kill tumor cells and release antigens that may be picked up, processed and presented by cross-presenting dendritic cells. CDX-1140 and Poly-ICLC may activate tumor antigen-loaded,cross-presenting dendritic cells, and generate tumor-specific T lymphocytes, a type of immune cells, that can search out and attack cancers. Giving immune modulators and radiation therapy may stimulate tumor cell death and activate the immune system.
IPI-926 is an inhibitor of the hedgehog pathway. IPI-926 may improve therapeutic outcomes in patients with Chondrosarcoma.
This phase I trial is studying the side effects and best dose of cixutumumab given together with doxorubicin hydrochloride and to see how well they work in treating patients with unresectable, locally advanced, or metastatic soft tissue sarcoma. Monoclonal antibodies, such as cixutumumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Drugs used in chemotherapy, such as doxorubicin hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving monoclonal antibody cixutumumab together with doxorubicin hydrochloride may kill more tumor cells.
RATIONALE: Sodium thiosulfate may reduce or prevent hearing loss in young patients receiving cisplatin for cancer. It is not yet known whether sodium thiosulfate is more effective than no additional treatment in preventing hearing loss. PURPOSE: This randomized phase III trial is studying sodium thiosulfate to see how well it works in preventing hearing loss in young patients receiving cisplatin for newly diagnosed germ cell tumor, hepatoblastoma, medulloblastoma, neuroblastoma, osteosarcoma, or other malignancy.
This phase I/II trial studies the side effects of pulmonary suffusion in controlling minimal residual disease in patients with sarcoma or colorectal carcinoma that has spread to the lungs. Pulmonary suffusion is a minimally invasive delivery of chemotherapeutic agents like cisplatin to lung tissues. Drugs used in chemotherapy, such as cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Pulmonary suffusion may also be useful in avoiding later use of drugs by vein that demonstrate no effect on tumors when delivered locally.
This study will enroll patients who have a diagnosis of locally advanced, unresectable or metastatic soft tissue or bone sarcoma (except gastrointestinal stromal tumors and Kaposi's sarcoma) from any site.
This study will enroll patients who have a diagnosis of locally advanced, unresectable or metastatic soft tissue or bone sarcoma (except gastrointestinal stromal tumors and Kaposi's sarcoma) from any site.
This phase I/II trial studies the side effects and best dose of nivolumab when given with or without ipilimumab to see how well they work in treating younger patients with solid tumors or sarcomas that have come back (recurrent) or do not respond to treatment (refractory). Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. It is not yet known whether nivolumab works better alone or with ipilimumab in treating patients with recurrent or refractory solid tumors or sarcomas.
This protocol is designed to test the feasibility of the administration of vincristine, adriamycin and cytoxan, alternating with the newly developed regimen ifosfamide VP-16 as well as the efficacy of this therapy in addition to radiotherapy in producing complete responses and disease-free survival in patients with Ewing's sarcoma, primitive sarcoma of bone, peripheral neuroepithelioma, and soft tissue sarcoma. This will not be a randomized study but will be comparable to the large data base of similar patients treated on successive Pediatric Branch studies.
RATIONALE: Drugs used in chemotherapy, such as cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Cryoablation kills cancer cells by freezing them. Giving chemotherapy together with cryoablation may kill more cancer cells. PURPOSE: This clinical trial is studying how well giving cyclophosphamide together with cryoablation works in treating patients with advanced or metastatic epithelial cancer.
RATIONALE: Cyproheptadine hydrochloride may prevent weight loss caused by cancer or cancer treatment. It is not yet known whether cyproheptadine is more effective than a placebo in preventing weight loss in young patients receiving chemotherapy for cancer. PURPOSE: This randomized phase III trial is studying cyproheptadine hydrochloride to see how well it works in preventing weight loss in young patients receiving chemotherapy for cancer.
RATIONALE: Thalidomide may stop the growth of cancer by stopping blood flow to the tumor. Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Combining thalidomide with docetaxel may kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of combining thalidomide with docetaxel in treating patients who have advanced cancer.
RATIONALE: Electroacupuncture may help to reduce or prevent delayed nausea and vomiting in patients treated with chemotherapy. PURPOSE: This randomized clinical trial is studying the effectiveness of electroacupuncture in treating delayed nausea and vomiting in patients who are receiving chemotherapy for newly diagnosed childhood sarcoma, neuroblastoma, nasopharyngeal cancer, germ cell tumors, or Hodgkin lymphoma.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: Phase II trial to study the effectiveness of arsenic trioxide in treating children who have advanced neuroblastoma or other solid tumors.
RATIONALE: Monoclonal antibodies can locate tumor cells and either kill them or deliver tumor-killing substances to them without harming normal cells. PURPOSE: Phase I trial to study the effectiveness of monoclonal antibody therapy in treating patients who have leptomeningeal metastases.
RATIONALE: Taking part in a clinical trial may help children with cancer receive more effective treatment. PURPOSE: Determine why patients who are eligible for protocols made available through the Pediatric Oncology Group do not enroll in them, and develop strategies to increase enrollment on these clinical trials.
RATIONALE: MS-275 may stop the growth of cancer cells by blocking the enzymes necessary for their growth. PURPOSE: This phase I trial is studying the side effects and best dose of MS-275 in treating patients with advanced solid tumors or lymphoma.