Treatment Trials

13 Clinical Trials for Various Conditions

Focus your search

COMPLETED
A Pilot Study of OncoSil™ Given to Patients With Pancreatic Cancer Treated With Gemcitabine +/- Nab-paclitaxel.
Description

To evaluate the safety of OncoSil™ in a patient population undergoing standard chemotherapy treatment for pancreatic cancer. This study has been designed to satisfy FDA regulatory requirements. The clinical investigation will be conducted at approximately 5 sites in the United States involving 20 patients.

RECRUITING
Testing the Safety of the Anti-Cancer Drugs Durvalumab and Olaparib During Radiation Therapy for Locally Advanced Unresectable Pancreatic Cancer
Description

This phase I trial tests the safety and tolerability of olaparib in combination with durvalumab and radiation therapy in patients with pancreatic cancer that has spread to nearby tissue or lymph nodes (locally advanced) and cannot be removed by surgery (unresectable). Olaparib is an inhibitor of PARP, an enzyme that helps repair deoxyribonucleic acid (DNA) when it becomes damaged. Blocking PARP may help keep cancer cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. Immunotherapy with monoclonal antibodies, such as durvalumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Radiation therapy uses high energy x-rays, particles, or radioactive seeds to kill cancer cells and shrink tumors. The combination of targeted therapy with olaparib, immunotherapy with durvalumab and radiation therapy may stimulate an anti-tumor immune response and promote tumor control in locally advanced unresectable pancreatic cancer.

COMPLETED
Ultrasound-Guided Verteporfin Photodynamic Therapy for the Treatment of Unresectable Solid Pancreatic Tumors or Advanced Pancreatic Cancer, VERTPAC-02 Study
Description

This phase II trial studies how well ultrasound-guided verteporfin photodynamic therapy works for the treatment of patients with solid pancreatic tumors that cannot be removed by surgery (unresectable) or pancreatic cancer that has spread to other places in the body (advanced). Photodynamic therapy is a type of laser device that is guided by ultrasound imaging and used in combination with the drug verteporfin that may be less invasive and as effective as current treatment methods for patients with pancreatic cancer.

TERMINATED
Liposomal Irinotecan, Fluorouracil and Leucovorin in Treating Patients With Refractory Advanced High Grade Neuroendocrine Cancer of Gastrointestinal, Unknown, or Pancreatic Origin
Description

This phase II trial studies how well liposomal irinotecan, leucovorin, and fluorouracil work in treating patients with high grade neuroendocrine cancer of gastrointestinal, unknown, or pancreatic origin that does not respond to treatment and has spread to other places in the body. Lliposomal irinotecan may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as fluorouracil and leucovorin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving liposomal irinotecan, leucovorin and fluorouracil may work better in treating patients with neuroendocrine cancer.

TERMINATED
Immunotherapy Study in Borderline Resectable or Locally Advanced Unresectable Pancreatic Cancer
Description

Unfortunately, despite the best clinical efforts and breakthroughs in biotechnology, most patients diagnosed with pancreatic cancer continue to die from the rapid progression of their disease. One primary reason for this is that the disease is typically without symptoms until significant local and/or distant spread has occurred and is often beyond the chance for cure at the time of the diagnosis. The lack of any treatment to substantially increase long term survival rates is reflected by the poor outcomes associated with this disease, specifically time to disease progression and overall survival. However, another important part of the body is now being looked at as a target for therapy against this disease - the immune system. Scientists have clearly shown that pancreatic tumor cells produce a number of defective proteins, or express normal proteins in highly uncharacteristic ways, as part of this cancer. In some cancers, these abnormalities can cause an immune response to the cancer cells much in the way one responds to infected tissue. In progressive cancers however, the immune system fails to effectively identify or respond to these abnormalities and the cancer cells are not attacked or destroyed for reasons not yet fully understood. This clinical trial proposes a new way to stimulate the immune system to recognize pancreatic cancer cells and to stimulate an immune response that destroys or blocks the growth of the cancer. This new method of treatment helps the immune system of pancreatic cancer patients to "identify" the cancerous tissue so that it can be eliminated from the body. As an example, most people are aware that patients with certain diseases may require an organ transplant to replace a damaged kidney or heart. After receiving their transplant, these patients receive special drugs because they are at great danger of having an immune response that destroys or "rejects" the transplanted organ. This "rejection" occurs when their immune system responds to differences between the cells of the transplanted organ and their own immune system by attacking the foreign tissue in the same way as it would attack infected tissue. When the differences between foreign tissues and the patient's body are even larger, as with the differences between organs from different species, the rejection is very rapid, highly destructive, and the immunity it generates is longlasting. This is called hyperacute rejection and the medicine used to immunize patients in this protocol tries to harness this response to teach a patient's immune system to fight their pancreatic cancer just as the body would learn to reject a transplanted organ from an animal. To do this, Algenpantucel-L immunotherapy contains human pancreatic cancer cells that contain a mouse gene that marks the cancer cells as foreign to patient's immune systems. The immune system therefore attacks these cancer cells just as they would attack any truly foreign tissue, destroying as much as it can. Additionally, the immune system is stimulated to identify differences (aside from the mouse gene) between these cancer cells and normal human tissue as foreign. This "education" of the immune system helps treat the patient because pancreatic cancer cells already present in a treated patient are believed to show some of the same differences from normal tissue as the modified pancreatic cancer cells in the product. Due to these similarities, the immune system, once "educated" by the Algenpantucel-L immunotherapy, identifies the patient's cancer as foreign and attacks. The chemotherapy combination to be used in this study has been shown to improve survival in advanced pancreatic cancer and is being combined with an experimental pancreatic cancer immunotherapy that stimulates the immune system to recognize and attack the cancer. One goal of this study is to determine whether chemotherapy and immunotherapies can work cooperatively to increase anti-tumor effects to levels beyond what would be seen with either treatment alone. In this experimental study, all patients are given a strong combination of anti-tumor chemotherapies while some patients are also given injections of an immunotherapy drug consisting of two types of pancreatic cancer cells that we have modified to make them more easily recognized and attacked by the immune system. We propose to test this new treatment protocol in patients with locally advanced pancreatic cancer to demonstrate that treatment with the immunotherapy increases the time until the tumor progresses or increases overall survival when given in combination with the current standard of care therapy for this disease.

NOT_YET_RECRUITING
STIL101 for Injection for the Treatment of Locally Advanced, Metastatic or Unresectable Pancreatic Cancer, Colorectal Cancer, Renal Cell Cancer, Cervical Cancer and Melanoma
Description

This phase I trial tests the safety and side effects of STIL101 for injection and how well it works in treating patients with pancreatic cancer, colorectal cancer (CRC), renal cell cancer (RCC), cervical cancer (CC) and melanoma that has spread to nearby tissue or lymph nodes (locally advanced) or to other places in the body (metastatic) or that cannot be removed by surgery (unresectable). STIL101 for injection, an autologous (made from the patients own cells) cellular therapy, is made up of specialized white blood cells called lymphocytes or "T cells" collected from a piece of the patients tumor tissue. The T cells collected from the tumor are then grown in a laboratory to create STIL101 for injection. STIL101 for injection is then given to the patient where it may attack the tumor. Giving chemotherapy, such as cyclophosphamide and fludarabine, helps prepare the body to receive STIL101 for injection in a way that allows the T cells the best opportunity to attack the tumor. Aldesleukin is a form of interleukin-2, a cytokine made by leukocytes. Aldesleukin increases the activity and growth of white blood cells called T lymphocytes and B lymphocytes. Giving STIL101 for injection may be safe, tolerable and/or effective in treating patients with locally advanced, metastatic or unresectable pancreatic cancer, CRC, RCC, CC and melanoma.

COMPLETED
Ascorbic Acid and Combination Chemotherapy in Treating Patients With Locally Advanced or Recurrent Pancreatic Cancer That Cannot Be Removed by Surgery
Description

This pilot clinical trial studies the side effects of ascorbic acid and combination chemotherapy in treating patients with pancreatic cancer that has spread to other places in the body, has come back, or cannot be removed by surgery. Nutrients found in food and dietary supplements, such as ascorbic acid, may improve the tolerability of chemotherapy regimens. Drugs used in chemotherapy, such as fluorouracil, irinotecan hydrochloride, and oxaliplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ascorbic acid and combination chemotherapy may work better in treating patients with pancreatic cancer.

COMPLETED
Study of Low-Dose Fractionated Radiotherapy in Patients With Locally Advanced Metastatic Pancreatic Cancer
Description

People with pancreatic cancer usually have a large amount of the cancer in the area of the pancreas and around it when they are diagnosed with it. Or their cancer has spread (metastasized)outside that area of the abdomen and is not able to be surgically removed (resected). For patients with metastatic disease, one standard treatment is the combination of gemcitabine and erlotinib. This combination has shown slightly longer survival compared to getting gemcitabine alone. For patients with localized but unresectable disease, the standard treatment remains controversial. Early studies showed that chemotherapy and radiation together was better than either one used alone. The greatest benefit of external beam radiotherapy may be after a period of full-dose chemotherapy alone, to help the rapid spread. A problem of beginning treatment with standard radiotherapy is that the doses of chemotherapy usually have to be reduced sometimes by half. Studies have already shown that low dose radiotherapy (LDRT)is safe. This study will evaluate the safety of LDRT instead of standard doses with full dosing of gemcitabine and erlotinib in patients with locally advanced or limited metastatic pancreatic cancer. Patients will be enrolled in groups of 3 to 6 each with a slightly higher dose of LDRT and erlotinib. For patients with locally advanced disease, this protocol also may help because most patients develop and die from spread to the liver and abdominal cavity.

TERMINATED
Serial Measurements of Molecular and Architectural Responses to Therapy (SMMART) PRIME Trial
Description

This phase Ib trial determines if samples from a patient's cancer can be tested to find combinations of drugs that provide clinical benefit for the kind of cancer the patient has. This study is also being done to understand why cancer drugs can stop working and how different cancers in different people respond to different types of therapy.

Conditions
Accelerated Phase Chronic Myelogenous Leukemia, BCR-ABL1 PositiveAnatomic Stage IV Breast Cancer AJCC v8AnemiaAnn Arbor Stage III Hodgkin LymphomaAnn Arbor Stage III Non-Hodgkin LymphomaAnn Arbor Stage IV Hodgkin LymphomaAnn Arbor Stage IV Non-Hodgkin LymphomaAtypical Chronic Myeloid Leukemia, BCR-ABL1 NegativeBlast Phase Chronic Myelogenous Leukemia, BCR-ABL1 PositiveCastration-Resistant Prostate CarcinomaChronic Phase Chronic Myelogenous Leukemia, BCR-ABL1 PositiveHematopoietic and Lymphoid System NeoplasmLocally Advanced Pancreatic AdenocarcinomaMetastatic Breast CarcinomaMetastatic Malignant Solid NeoplasmMetastatic Pancreatic AdenocarcinomaMyelodysplastic/Myeloproliferative Neoplasm With Ring Sideroblasts and ThrombocytosisMyelodysplastic/Myeloproliferative Neoplasm, UnclassifiablePrimary MyelofibrosisRecurrent Acute Lymphoblastic LeukemiaRecurrent Acute Myeloid LeukemiaRecurrent Chronic Lymphocytic LeukemiaRecurrent Chronic Myelogenous Leukemia, BCR-ABL1 PositiveRecurrent Hematologic MalignancyRecurrent Hodgkin LymphomaRecurrent Myelodysplastic SyndromeRecurrent Myelodysplastic/Myeloproliferative NeoplasmRecurrent Myeloproliferative NeoplasmRecurrent Non-Hodgkin LymphomaRecurrent Plasma Cell MyelomaRecurrent Small Lymphocytic LymphomaRefractory Acute Lymphoblastic LeukemiaRefractory Acute Myeloid LeukemiaRefractory Chronic Lymphocytic LeukemiaRefractory Chronic Myelogenous Leukemia, BCR-ABL1 PositiveRefractory Chronic Myelomonocytic LeukemiaRefractory Hematologic MalignancyRefractory Hodgkin LymphomaRefractory Malignant Solid NeoplasmRefractory Myelodysplastic SyndromeRefractory Myelodysplastic/Myeloproliferative NeoplasmRefractory Non-Hodgkin LymphomaRefractory Plasma Cell MyelomaRefractory Primary MyelofibrosisRefractory Small Lymphocytic LymphomaStage II Pancreatic Cancer AJCC v8Stage III Pancreatic Cancer AJCC v8Stage IV Pancreatic Cancer AJCC v8Stage IV Prostate Cancer AJCC v8Unresectable Pancreatic Adenocarcinoma
ACTIVE_NOT_RECRUITING
A Registry Study of NanoKnife IRE for Stage 3 Pancreatic Cancer
Description

This multicenter, observational study will evaluate the effectiveness and safety of the NanoKnife System when used for the ablation of Stage 3 pancreatic adenocarcinoma (Stage 3 PC). Eligible patients will be recruited over a 36-month period and participating institutions will enroll and provide data on consecutive patients that meet inclusion and exclusion criteria. Each patient will be followed up for the duration of the study or until death. The study will include two (2) cohorts: patients who received standard of care (SOC) and received irreversible electroporation (IRE) \[IRE cohort\], and patients who were treated with SOC and did not receive IRE \[SOC cohort\].

ACTIVE_NOT_RECRUITING
A Pivotal Study of Safety and Effectiveness of NanoKnife IRE for Stage 3 Pancreatic Cancer
Description

Subjects will be offered the opportunity to participate in a randomized, controlled, 2-arm, unblinded multicenter trial (RCT). There will be 2 study arms: the control arm receiving chemotherapy with the modified FOLFIRINOX regimen alone; and the irreversible electroporation (IRE) arm, receiving chemotherapy with the modified FOLFIRINOX regimen followed by IRE with the NanoKnife System using either an open or a percutaneous approach. All subjects will be treated with the modified FOLFIRINOX regimen for at least 3 months; randomization to either control or IRE arm will take place at the time of completion of the 3 month modified FOLFIRINOX chemotherapy regimen. Randomization will be conducted centrally. Subjects will be randomized in a 1:1 ratio and must be found to have no evidence of disease progression after completion of the 3 month modified FOLFIRINOX chemotherapy regimen in order to participate in the RCT. All radiologic assessments will be performed as consistent with the imaging protocol. All post induction and post IRE treatments are left to the discretion of the treating physician. The minimum period of follow-up will be for 24 months or until death.

COMPLETED
Sym024 Monotherapy and in Combination With Sym021 in Patients With Advanced Solid Tumor Malignancies
Description

The primary purpose of this study is to see if Sym024 is safe and tolerable as monotherapy and in combination with Sym021 in patients with solid tumor malignancies.

COMPLETED
Capecitabine Combined With Cisplatin in Treating Patients With Locally Advanced or Metastatic Solid Tumors
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one chemotherapy drug may kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of capecitabine combined with cisplatin in treating patients who have locally advanced or metastatic solid tumors .

Conditions