Treatment Trials

15 Clinical Trials for Various Conditions

Focus your search

COMPLETED
Capecitabine, Temozolomide, and Bevacizumab for Metastatic or Unresectable Pancreatic Neuroendocrine Tumors
Description

The purpose of this research is to evaluate the effectiveness and safety of a combination of capecitabine, temozolomide and bevacizumab in the treatment of advanced pancreatic neuroendocrine tumors.

RECRUITING
Testing the Addition of Sunitinib Malate to Lutetium Lu 177 Dotatate (Lutathera) in Pancreatic Neuroendocrine Tumors
Description

This phase I trial tests the safety, side effects, and best dose of sunitinib malate in combination with lutetium Lu 177 dotatate in treating patients with pancreatic neuroendocrine tumors. Sunitinib malate is in a class of medications called kinase inhibitors and a form of targeted therapy that blocks the action of abnormal proteins called VEGFRs that signal tumor cells to multiply. This helps stop or slow the spread of tumor cells. Radioactive drugs, such as lutetium Lu 177 dotatate, may carry radiation directly to tumor cells and not harm normal cells. It is also a form of targeted therapy because it works by attaching itself to specific molecules (receptors) on the surface of tumor cells, known as somatostatin receptors, so that radiation can be delivered directly to the tumor cells and kill them. Giving sunitinib malate and lutetium Lu 177 dotatate in combination may be safer and more effective in treating pancreatic neuroendocrine tumors than giving either drug alone.

ACTIVE_NOT_RECRUITING
Testing Cabozantinib in Patients With Advanced Pancreatic Neuroendocrine and Carcinoid Tumors
Description

This phase III trial studies cabozantinib to see how well it works compared with placebo in treating patients with neuroendocrine or carcinoid tumors that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). Cabozantinib is a chemotherapy drug known as a tyrosine kinase inhibitor, and it targets specific tyrosine kinase receptors, that when blocked, may slow tumor growth.

ACTIVE_NOT_RECRUITING
Comparing Capecitabine and Temozolomide in Combination to Lutetium Lu 177 Dotatate in Patients With Advanced Pancreatic Neuroendocrine Tumors
Description

This phase II trial compares capecitabine and temozolomide to lutetium Lu 177 dotatate for the treatment of pancreatic neuroendocrine tumors that have spread to other parts of the body (advanced) or are not able to be removed by surgery (unresectable). Chemotherapy drugs, such as capecitabine and temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radioactive drugs, such as lutetium Lu 177 dotatate, may carry radiation directly to tumor cells and may reduce harm to normal cells. The purpose of this study is to find out whether capecitabine and temozolomide or lutetium Lu 177 dotatate may kill more tumor cells in patients with advanced pancreatic neuroendocrine tumors.

ACTIVE_NOT_RECRUITING
Testing the Addition of an Anti-cancer Drug, BAY 1895344, to Usual Chemotherapy for Advanced Stage Solid Tumors, With a Specific Focus on Patients With Small Cell Lung Cancer, Poorly Differentiated Neuroendocrine Cancer, and Pancreatic Cancer
Description

This phase I trial tests the safety, side effects and best dose of BAY 1895344 when given together with usual chemotherapy (irinotecan or topotecan) in treating patients with solid tumors that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced), with a specific focus on small cell lung cancer, poorly differentiated neuroendocrine cancer, and pancreatic cancer. BAY 1895344 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as irinotecan and topotecan, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Adding BAY 1895344 to irinotecan or topotecan may be safe and tolerable in treating patients with advanced solid tumors.

ACTIVE_NOT_RECRUITING
Abemaciclib in Treating Patients With Advanced, Refractory, and Unresectable Digestive System Neuroendocrine Tumors
Description

This phase II trial studies how well abemaciclib works in treating patients with digestive system neuroendocrine tumors that have spread to other places in the body, do not respond to treatment, and cannot be removed by surgery. Abemaciclib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

TERMINATED
Liposomal Irinotecan, Fluorouracil and Leucovorin in Treating Patients With Refractory Advanced High Grade Neuroendocrine Cancer of Gastrointestinal, Unknown, or Pancreatic Origin
Description

This phase II trial studies how well liposomal irinotecan, leucovorin, and fluorouracil work in treating patients with high grade neuroendocrine cancer of gastrointestinal, unknown, or pancreatic origin that does not respond to treatment and has spread to other places in the body. Lliposomal irinotecan may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as fluorouracil and leucovorin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving liposomal irinotecan, leucovorin and fluorouracil may work better in treating patients with neuroendocrine cancer.

TERMINATED
A Phase II Study of Pertuzumab and Erlotinib for Metastatic or Unresectable Neuroendocrine Tumors
Description

To determine objective response rates (RR) by RECIST guideline version 1.1 for all patients treated with this strategy consisting of initial therapy with pertuzumab as a single agent and then addition of erlotinib for those who have stable disease or progressive disease at three months (Simon design).

COMPLETED
Sapanisertib and Ziv-Aflibercept in Treating Patients With Recurrent Solid Tumors That Are Metastatic or Cannot Be Removed by Surgery
Description

This phase I trial studies the side effects and best dose of sapanisertib and ziv-aflibercept in treating patients with solid tumors that have come back (recurrent) and have spread to another place in the body (metastatic) or cannot be removed by surgery (unresectable). Sapanisertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Ziv-aflibercept may stop the growth of solid tumors by blocking the growth of new blood vessels necessary for tumor growth. Giving sapanisertib with ziv-aflibercept may kill more tumor cells.

COMPLETED
Yttrium Y 90 Resin Microspheres Data Collection in Unresectable Liver Cancer: the RESIN Study
Description

This research registry studies Yttrium Y 90 resin microspheres in collecting data from patients with liver cancer not capable of being removed by surgery (unresectable) for the radiation-emitting Selective Internal Radiation-Spheres (SIR-spheres) in non-resectable (RESIN) liver tumor registry. The information generated will help doctors better understand treatment patterns involving Y90 therapy, gain additional insights in the long-term outcomes for patients, as well as guide future research for using Y90 therapy, especially for those conditions where data is currently very limited or lacking.

RECRUITING
Association Between Health Care Provider (HCP)-Assessed ECOG Performance Status (PS) and Overall Survival, and Objectively Measure of Physical Activity (PA) Levels in Advance-cancer Patients"
Description

The main goal of this phase of the study is to determine if objectively assessed Physical Activity (PA) levels in advanced-cancer patients are associated with health care provider (HCP)-assessed ECOG performance status and overall survival. The purpose is to advance the evidence-base for incorporating objective assessment of Physical Activity (PA) in the context of performance status assessment in advanced cancer patients.

Conditions
Malignant Head and Neck NeoplasmMalignant NeoplasmMetastatic Malignant Neoplasm in the NeckMetastatic Malignant Neoplasm in the Uterine CervixPancreatic AdenocarcinomaPancreatic Neuroendocrine CarcinomaRecurrent Colorectal CarcinomaStage I Colorectal Cancer AJCC v6 and v7Stage I Hypopharyngeal Carcinoma AJCC v7Stage I Major Salivary Gland Cancer AJCC v7Stage I Nasopharyngeal Carcinoma AJCC v7Stage I Oral Cavity Cancer AJCC v6 and v7Stage I Oropharyngeal Carcinoma AJCC v6 and v7Stage II Colorectal Cancer AJCC v7Stage II Hypopharyngeal Carcinoma AJCC v6 and v7Stage II Major Salivary Gland Cancer AJCC v7Stage II Nasopharyngeal Carcinoma AJCC v7Stage II Oral Cavity Cancer AJCC v6 and v7Stage II Oropharyngeal Carcinoma AJCC v6 and v7Stage IIA Colorectal Cancer AJCC v7Stage IIB Colorectal Cancer AJCC v7Stage IIC Colorectal Cancer AJCC v7Stage III Colorectal Cancer AJCC v7Stage III Hypopharyngeal Carcinoma AJCC v7Stage III Laryngeal Cancer AJCC v6 and v7Stage III Major Salivary Gland Cancer AJCC v7Stage III Nasopharyngeal Carcinoma AJCC v7Stage III Oral Cavity Cancer AJCC v6 and v7Stage III Oropharyngeal Carcinoma AJCC v7Stage IIIA Colorectal Cancer AJCC v7Stage IIIB Colorectal Cancer AJCC v7Stage IIIC Colorectal Cancer AJCC v7Stage IV Colorectal Cancer AJCC v7Stage IVA Colorectal Cancer AJCC v7Stage IVA Hypopharyngeal Carcinoma AJCC v7Stage IVA Laryngeal Cancer AJCC v7Stage IVA Major Salivary Gland Cancer AJCC v7Stage IVA Nasopharyngeal Carcinoma AJCC v7Stage IVA Oral Cavity Cancer AJCC v6 and v7Stage IVA Oropharyngeal Carcinoma AJCC v7Stage IVB Colorectal Cancer AJCC v7Stage IVB Hypopharyngeal Carcinoma AJCC v7Stage IVB Laryngeal Cancer AJCC v7Stage IVB Major Salivary Gland Cancer AJCC v7Stage IVB Nasopharyngeal Carcinoma AJCC v7Stage IVB Oral Cavity Cancer AJCC v6 and v7Stage IVB Oropharyngeal Carcinoma AJCC v7Metastatic or Locally Unresectable Solid Tumor
COMPLETED
Study of Pasireotide Long Acting Release (LAR) in Patients With Metastatic Neuroendocrine Tumors (NETs)
Description

The goal of this clinical research study is to learn if the study drug, Pasireotide LAR can shrink or slow the growth of Metastatic Neuroendocrine Carcinomas. The safety of this drug will also be studied. The patient's physical state, changes in the size of the tumor, and laboratory findings taken while on-study will help us decide if Pasireotide LAR is safe and effective.

TERMINATED
Doxorubicin Beads in Treating Patients With Unresectable Liver Metastases From Neuroendocrine Tumors
Description

RATIONALE: Drugs used in chemotherapy, such as doxorubicin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Infusing doxorubicin beads into the liver, and blocking blood flow to the tumor, may keep doxorubicin near the tumor and kill more tumor cells. PURPOSE: This clinical trial is studying the side effects of doxorubicin beads and to see how well they work in treating patients with unresectable liver metastases from neuroendocrine tumors.

COMPLETED
Romidepsin in Treating Patients With Lymphoma, Chronic Lymphocytic Leukemia, or Solid Tumors With Liver Dysfunction
Description

This phase I trial studies the side effects and best dose of romidepsin in treating patients with lymphoma, chronic lymphocytic leukemia, or solid tumors with liver dysfunction. Romidepsin may stop the growth of cancer cells by entering the cancer cells and by blocking the activity of proteins that are important for the cancer's growth and survival.

Conditions
GliomaHematopoietic and Lymphoid Cell NeoplasmLymphomaMetastatic Malignant Solid NeoplasmNeuroendocrine NeoplasmRecurrent Adult Soft Tissue SarcomaRecurrent Bladder CarcinomaRecurrent Breast CarcinomaRecurrent Chronic Lymphocytic LeukemiaRecurrent Colorectal CarcinomaRecurrent Head and Neck CarcinomaRecurrent Lung CarcinomaRecurrent Malignant Solid NeoplasmRecurrent MelanomaRecurrent Pancreatic CarcinomaRecurrent Primary Cutaneous T-Cell Non-Hodgkin LymphomaRecurrent Prostate CarcinomaRecurrent Renal Cell CarcinomaRecurrent Thyroid Gland CarcinomaRefractory Chronic Lymphocytic LeukemiaRefractory Mature T-Cell and NK-Cell Non-Hodgkin LymphomaRefractory Primary Cutaneous T-Cell Non-Hodgkin LymphomaStage III Breast Cancer AJCC v7Stage III Colorectal Cancer AJCC v7Stage III Cutaneous Melanoma AJCC v7Stage III Lung Cancer AJCC v7Stage III Pancreatic Cancer AJCC v6 and v7Stage III Prostate Cancer AJCC v7Stage III Renal Cell Cancer AJCC v7Stage III Soft Tissue Sarcoma AJCC v7Stage IIIA Breast Cancer AJCC v7Stage IIIA Colorectal Cancer AJCC v7Stage IIIA Cutaneous Melanoma AJCC v7Stage IIIB Breast Cancer AJCC v7Stage IIIB Colorectal Cancer AJCC v7Stage IIIB Cutaneous Melanoma AJCC v7Stage IIIC Breast Cancer AJCC v7Stage IIIC Colorectal Cancer AJCC v7Stage IIIC Cutaneous Melanoma AJCC v7Stage IV Breast Cancer AJCC v6 and v7Stage IV Colorectal Cancer AJCC v7Stage IV Cutaneous Melanoma AJCC v6 and v7Stage IV Lung Cancer AJCC v7Stage IV Pancreatic Cancer AJCC v6 and v7Stage IV Prostate Cancer AJCC v7Stage IV Renal Cell Cancer AJCC v7Stage IV Soft Tissue Sarcoma AJCC v7Stage IVA Colorectal Cancer AJCC v7Stage IVB Colorectal Cancer AJCC v7Unresectable Solid Neoplasm
COMPLETED
Temsirolimus and Vinorelbine Ditartrate in Treating Patients With Unresectable or Metastatic Solid Tumors
Description

RATIONALE: Temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as vinorelbine ditartrate, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving temsirolimus together with vinorelbine ditartrate may kill more tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of giving temsirolimus and vinorelbine ditartrate together in treating patients with unresectable or metastatic solid tumors.