25 Clinical Trials for Various Conditions
This phase II trial studies how well pembrolizumab works in treating patients with small bowel adenocarcinoma that has spread to other places in the body or that cannot be removed by surgery. Monoclonal antibodies, such as pembrolizumab, may interfere with the ability of tumor cells to grow and spread.
Background: Tumors that have spread to the lining of the abdomen from other cancers, such as cancer of the appendix, colon, or ovary, are called peritoneal carcinomatosis. In most cases, outcomes are poor. Researchers want to test a new treatment. Objective: To learn if the combination of oral nilotinib plus paclitaxel given by IV and directly into the abdomen can reduce tumors enough for people to have surgery. Eligibility: Adults aged 18 and older with peritoneal carcinomatosis that is too widespread for surgery. Design: Participants will be screened with: Physical exam Medical history Blood and urine tests Electrocardiogram Laparoscopy. They will get general anesthesia. Small cuts will be made in their abdomen. Tissue and fluid samples will be taken. Surveys about their health CT scans of their torso Participants will have up to 4 more laparoscopies. During the first procedure, a port will be placed under the skin of their abdomen (an IP port). It will be attached to a catheter that is placed in their abdomen. Participants will get treatment in 3-week cycles, for 3 or 6 cycles. They will take nilotinib by mouth twice daily. They will get paclitaxel by IP port (once per cycle) and by IV (twice per cycle). After cycles 3 and 6, they will have a laparoscopy and CT scans. Then they may take nilotinib and get IV paclitaxel for up to 1 year. At study visits, participants will repeat some screening tests. About 6 weeks after treatment ends and then every 3 months for 3 years, participants will have follow-up visits at NIH or with their local doctor.
RATIONALE: Hepatic arterial infusion uses a catheter to deliver anticancer substances directly into the liver. Drugs used in chemotherapy, such as melphalan, work in different ways to stop tumor cells from dividing so they stop growing or die. Giving drugs in different ways may kill more tumor cells. PURPOSE: This phase II trial is studying how well giving an hepatic arterial infusion of melphalan together with hepatic perfusion works in treating patients with unresectable liver cancer.
This phase I trial is studying the side effects and best dose of giving 7-hydroxystaurosporine together with irinotecan hydrochloride in treating patients with metastatic or unresectable solid tumors, including triple-negative breast cancer (currently enrolling only patients with triple-negative breast cancer since 6/8/2007). Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Giving 7-hydroxystaurosporine together with irinotecan hydrochloride may help kill more cancer cells by making tumor cells more sensitive to the drug.
This phase II trial studies how well cobimetinib and atezolizumab work in treating participants with rare tumors that have spread to other places in the body (advanced) or that does not respond to treatment (refractory). Cobimetinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving cobimetinib and atezolizumab may work better in treating participants with advanced or refractory rare tumors.
RATIONALE: Drugs used in chemotherapy, such as irinotecan, fluorouracil, and leucovorin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of irinotecan when given together with fluorouracil and leucovorin in treating patients with advanced gastrointestinal cancer.
This phase I trial is studying the side effects and best dose of erlotinib hydrochloride when given together with cetuximab and to see how well they work in treating patients with advanced gastrointestinal cancer, head and neck cancer, non-small cell lung cancer, or colorectal cancer. Erlotinib hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Erlotinib hydrochloride and cetuximab may also stop the growth of tumor cells by blocking blood flow to the tumor. Giving erlotinib hydrochloride together with cetuximab may kill more tumor cells.
This clinical trial is studying the amount of EF5 and motexafin lutetium present in tumor cells and/or normal tissues of patients with abdominal (such as ovarian, colon, or stomach cancer) or non-small cell lung cancer. EF5 may be effective in measuring oxygen in tumor tissue. Photosensitizing drugs such as motexafin lutetium are absorbed by tumor cells and, when exposed to light, become active and kill the tumor cells. Knowing the level of oxygen in tumor tissue and the level of motexafin lutetium absorbed by tumors and normal tissue may help predict the effectiveness of anticancer therapy
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one drug may kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of combining gemcitabine, fluorouracil, and leucovorin in treating patients with recurrent, refractory, or metastatic solid tumors or lymphomas.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Interferon alfa may interfere with the growth of cancer cells. Colony-stimulating factors such as filgrastim may increase the number of immune cells found in bone marrow or peripheral blood and may help a person recover from the side effects of chemotherapy. Combining chemotherapy with interferon alfa may kill more tumor cells. PURPOSE: Phase II trial to study the effectiveness of combining chemotherapy and interferon alfa followed by filgrastim in treating patients who have gastrointestinal tract cancer.
Interleukin-12 may kill tumor cells by stopping blood flow to the tumor and by stimulating a person's white blood cells to kill cancer cells. Monoclonal antibodies such as trastuzumab can locate tumor cells and either kill them or deliver tumor-killing substances to them without harming normal cells. Phase I trial to study the effectiveness of interleukin-12 and trastuzumab in treating patients who have cancer that has high levels of HER2/neu and has not responded to previous therapy
The goal of this clinical research study is to learn if the study drug, Pasireotide LAR can shrink or slow the growth of Metastatic Neuroendocrine Carcinomas. The safety of this drug will also be studied. The patient's physical state, changes in the size of the tumor, and laboratory findings taken while on-study will help us decide if Pasireotide LAR is safe and effective.
RATIONALE: Palliative care may help patients with advanced cancer live more comfortably. PURPOSE: This randomized clinical trial is studying an early intervention palliative care program to see how well it works compared to a standard care program in improving end-of-life care in patients with advanced lung , gastrointestinal, genitourinary, or breast cancer.
RATIONALE: Monoclonal antibodies, such as RAV12, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. PURPOSE: This phase I trial is studying the side effects and best dose of RAV12 in treating patients with metastatic or recurrent adenocarcinoma.
RATIONALE: PV701 may be able to kill tumor cells while leaving normal cells undamaged. PURPOSE: Phase I trial to study the effectiveness of PV701 in treating patients who have advanced or recurrent ovarian epithelial, fallopian tube, primary peritoneal, colorectal, or other cancer found primarily within the peritoneal cavity.
RATIONALE: Thalidomide may stop the growth of cancer by stopping blood flow to the tumor. Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Combining thalidomide with docetaxel may kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of combining thalidomide with docetaxel in treating patients who have advanced cancer.
RATIONALE: MS-275 may stop the growth of cancer cells by blocking the enzymes necessary for their growth. PURPOSE: This phase I trial is studying the side effects and best dose of MS-275 in treating patients with advanced solid tumors or lymphoma.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one chemotherapy drug may kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of capecitabine combined with cisplatin in treating patients who have locally advanced or metastatic solid tumors .
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one drug may kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of oxaliplatin with or without floxuridine and leucovorin in treating patients who have metastatic cancer of the peritoneum.
Phase I trial to study the effectiveness of trastuzumab plus R115777 in treating patients who have advanced or metastatic cancer. Monoclonal antibodies such as trastuzumab can locate tumor cells and either kill them or deliver tumor-killing substances to them without harming normal cells. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining trastuzumab with R115777 may kill more tumor cells.
RATIONALE: Inserting a gene that has been created in the laboratory into a person's white blood cells may make the body build an immune response to kill cancer cells. PURPOSE: Phase I trial to study the effectiveness of gene therapy in treating patients who have cancer that has not responded to previous therapy.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one drug may kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of irinotecan and capecitabine in treating patients who have solid tumors that have not responded to previous treatment.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: Phase I trial to study the effectiveness of aminocamptothecin in treating patients with advanced cancer of the peritoneal cavity.
Phase I trial to study the effectiveness of interleukin-12 in treating patients with refractory ovarian or abdominal cancers. Interleukin-12 may kill tumor cells by stopping blood flow to the tumor and by stimulating a persons's white blood cells to kill cancer cells.
RATIONALE: Interleukin-12 may kill tumor cells by stimulating a person's white blood cells to kill cancer cells. PURPOSE: Phase I trial to study the effectiveness of interleukin-12 in treating patients with cancer in the abdomen.