Treatment Trials

35 Clinical Trials for Various Conditions

Focus your search

COMPLETED
TOCOSOL(TM) Paclitaxel in Metastatic or Locally Advanced Unresectable Transitional Cell Carcinoma of the Urothelium
Description

Phase 2B, multicenter study evaluating the safety and efficacy of weekly TOCOSOL Paclitaxel in taxane-naive patients receiving second line chemotherapy for metastatic or locally advanced, unresectable transitional cell carcinoma of the urothelium

ACTIVE_NOT_RECRUITING
Ixazomib Citrate With Gemcitabine Hydrochloride and Doxorubicin Hydrochloride in Treating Patients With Urothelial Cancer That is Metastatic or Cannot Be Removed by Surgery
Description

This phase I/II trial studies the side effects and best dose of ixazomib citrate, gemcitabine hydrochloride, and doxorubicin hydrochloride when given together in treating patients with urothelial cancer that has spread to other places in the body (metastatic) or cannot be removed by surgery. Ixazomib citrate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as gemcitabine hydrochloride and doxorubicin hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ixazomib citrate together with gemcitabine hydrochloride and doxorubicin hydrochloride may be a better treatment for urothelial cancer.

ACTIVE_NOT_RECRUITING
Testing the Addition of an Anti-cancer Drug, BAY 1895344, to the Usual Chemotherapy Treatment (Cisplatin, or Cisplatin and Gemcitabine) for Advanced Solid Tumors With Emphasis on Urothelial Cancer
Description

This phase I trial identifies the best dose, possible benefits and/or side effects of BAY 1895344 in combination with chemotherapy in treating patients with solid tumors or urothelial cancer that has spread to other places in the body (advanced). BAY 1895344 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Cisplatin and gemcitabine are chemotherapy drugs that stop the growth of tumor cells by killing the cells. Combining BAY 1895344 with chemotherapy treatment (cisplatin, or cisplatin and gemcitabine) may be effective for the treatment of advanced solid tumors, including urothelial cancer.

RECRUITING
Pembrolizumab Plus CA-4948 for the Treatment of Patients With Progressive Metastatic Urothelial Cancer Despite Prior Immunotherapy
Description

This phase I trial tests the safety, side effects, best dose, and effectiveness of emavusertib (CA-4948) in combination with pembrolizumab in treating patients with urothelial cancer that has spread from where it first started to other places in the body (metastatic) and that has a resistance to PD-1/PD-L1 immune checkpoint inhibitors. CA-4948, a kinase inhibitor, may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the tumor, and may interfere with the ability of tumor cells to grow and spread. Giving CA-4948 in combination with pembrolizumab may be safe, tolerable and/or effective in treating patients with metastatic urothelial cancer that is resistant to PD-1/PD-L1 immune checkpoint inhibitors.

RECRUITING
Tremelimumab + Durvalumab(MEDI4736)+ Belinostat in Urothelial Carcinoma
Description

This phase I trial studies the side effects and best dose of belinostat when given together with durvalumab in treating patients with urothelial cancer that has spread to other places in the body (metastatic) or cannot be removed by surgery (unresectable) and has spread to nearby tissue or lymph nodes (locally advanced). Immunotherapy with monoclonal antibodies, such as durvalumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Belinostat is a potential anti-cancer drug, known as a histone deacetylase (HDAC) inhibitor, which means that belinostat stops the activity of HDAC enzymes (an enzyme is a protein that in small amounts can speed up a biological reaction). HDAC enzymes play an important role in cell growth and cell death. Giving durvalumab and belinostat may improve the body's ability to fight cancer.

ACTIVE_NOT_RECRUITING
ARID1A and/or KDM6A Mutation and CXCL13 Expression
Description

This phase II trial studies the effect of nivolumab in urothelial cancer that has spread to other places in the body (metastatic), specifically in patients with aberrations in ARID1A gene (ARID1A mutation) and correlate with expression level of CXCL13, an immune cytokine. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving nivolumab may help control the disease in patients with urothelial cancer or solid tumors. This trial aims at enriching patient selection based on genomic and immunological attributes of the tumor.

RECRUITING
Cabozantinib in Combination With Enfortumab Vedotin for Locally Advanced or Metastatic Urothelial Cancer
Description

This phase I/Ib trial seeks to find out the best dose, possible benefits and/or side effects of cabozantinib in combination with enfortumab vedotin in treating urothelial cancer that has spread to nearby tissues and lymph nodes (locally advanced) or other parts of the body (metastatic). Cabozantinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Enfortumab vedotin is a monoclonal antibody, enfortumab, linked to a toxic agent called vedotin. Enfortumab attaches to nectin-4 tumor cells in a targeted way and delivers vedotin to kill them. Cabozantinib in combination with enfortumab vedotin may be safe and effective in treating locally advanced or metastatic urothelial cancer.

TERMINATED
Pemigatinib + Pembrolizumab vs Pemigatinib Alone vs Standard of Care for Urothelial Carcinoma (FIGHT-205)
Description

The purpose of this study is to evaluate the safety and efficacy of pemigatinib plus pembrolizumab or pemigatinib alone versus the standard of care for participants with metastatic or unresectable urothelial carcinoma who are not eligible to receive cisplatin, are harboring FGFR3 mutation or rearrangement, and who have not received prior treatment.

ACTIVE_NOT_RECRUITING
Eribulin Mesylate in Treating Patients With Locally Advanced or Metastatic Cancer of the Urothelium and Kidney Dysfunction
Description

This phase I/II trial studies the effect of eribulin mesylate and to see how well it works in treating patients with cancer of the urothelium that has spread to nearby tissue (locally advanced) or to other places in the body (metastatic)and kidney dysfunction. Drugs used in chemotherapy, such as eribulin mesylate, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Chemotherapy drugs may have different effects in patients who have changes in their kidney function.

WITHDRAWN
Adoptive Cell Therapy With (LN-145) in Combination With Pembrolizumab in Treating Patients With Unresectable or Metastatic Transitional Cell Cancer Who Have Failed Cisplatin-Based Chemotherapy
Description

This phase II trial studies how well autologous tumor infiltrating lymphocytes (LN-145) and pembrolizumab work in treating patients with transitional cell cancer that cannot be removed by surgery or has spread to other places in the body and have failed cisplatin-based chemotherapy. LN-145 is made up of specialized immune cells called lymphocytes or T cells that are taken from a patient's tumor, grown in a manufacturing facility and infused back into the preconditioned patient to attack the tumor. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving LN-145 may help control transitional cell bladder cancer when given together with pembrolizumab

COMPLETED
Atezolizumab and CYT107 in Treating Participants With Locally Advanced, Inoperable, or Metastatic Urothelial Carcinoma
Description

This phase II trial studies how well atezolizumab when given with glycosylated recombinant human interleukin-7 (CYT107) works in treating patients with urothelial carcinoma that has spread to nearby tissue or lymph nodes (locally advanced), cannot be removed by surgery (inoperable), or has spread to other places in the body (metastatic). Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. CYT107 is a biological product naturally made by the body that may stimulate the immune system to destroy tumor cells. Giving atezolizumab and CYT107 may work better in treating patients with locally advanced, inoperable, or metastatic urothelial carcinoma compared to atezolizumab alone.

ACTIVE_NOT_RECRUITING
Atezolizumab With or Without Eribulin Mesylate in Treating Patients With Recurrent Locally Advanced or Metastatic Urothelial Cancer
Description

This phase II trial studies the side effects of atezolizumab with or without eribulin mesylate and how well they work in treating patients with urothelial cancer that has come back (recurrent), spread to nearby tissues or lymph nodes (locally advanced), or spread from where it first started (primary site) to other places in the body (metastatic). Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, such as eribulin mesylate, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving atezolizumab and eribulin mesylate may work better at treating urothelial cancer compared to atezolizumab alone.

ACTIVE_NOT_RECRUITING
INO-5401 + INO-9012 in Combination With Atezolizumab in Locally Advanced Unresectable or Metastatic/Recurrent Urothelial Carcinoma
Description

This is a Phase I/IIA, open-label, multi-center trial to evaluate the safety, immunogenicity and preliminary clinical efficacy of INO-5401 + INO-9012 delivered by intramuscular (IM) injection followed by electroporation (EP), in combination with atezolizumab in participants with locally advanced unresectable or metastatic/recurrent Urothelial Carcinoma (UCa). The trial population is divided into two cohorts: Cohort A: Participants with locally advanced unresectable or metastatic/recurrent UCa, who have confirmed disease progression during or following treatment with anti-Programmed Death receptor-1/Programmed Death receptor Ligand-1 (anti-PD-1/PD-L1) therapy; Cohort B: Participants with locally advanced unresectable or metastatic/recurrent UCa, who are treatment naïve and ineligible for cisplatin-based chemotherapy. A safety run-in will be performed with up to six participants (safety analysis participants) from cohort A.

COMPLETED
Nab-Paclitaxel and Bevacizumab in Treating Patients With Unresectable Stage IV Melanoma or Gynecological Cancers
Description

This phase I trial studies the side effects and best dose of nab-paclitaxel and bevacizumab in treating patients with stage IV melanoma that cannot be removed by surgery (unresectable), cancer of the cervix, endometrium, ovary, fallopian tube or peritoneal cavity. Drugs used in chemotherapy, such as nab-paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Bevacizumab may stop or slow tumor growth by blocking the growth of new blood vessels necessary for tumor growth. Giving nab paclitaxel and bevacizumab may kill more tumor cells than nab-paclitaxel alone.

Conditions
Cervical AdenocarcinomaCervical AdenosarcomaCervical Adenosquamous CarcinomaCervical CarcinosarcomaCervical Squamous Cell CarcinomaClinical Stage IV Cutaneous Melanoma AJCC v8Endometrial Adenosquamous CarcinomaEndometrial Clear Cell AdenocarcinomaEndometrial Endometrioid AdenocarcinomaEndometrial Mixed Cell AdenocarcinomaEndometrial Mucinous AdenocarcinomaEndometrial Serous AdenocarcinomaEndometrial Undifferentiated CarcinomaFallopian Tube AdenocarcinomaFallopian Tube CarcinosarcomaFallopian Tube Clear Cell AdenocarcinomaFallopian Tube Endometrioid AdenocarcinomaFallopian Tube Mucinous AdenocarcinomaFallopian Tube Serous AdenocarcinomaFallopian Tube Squamous Cell CarcinomaFallopian Tube Transitional Cell CarcinomaFallopian Tube Undifferentiated CarcinomaMalignant Female Reproductive System NeoplasmMalignant Ovarian Clear Cell TumorMalignant Ovarian Endometrioid TumorMalignant Ovarian Epithelial TumorMalignant Ovarian Mucinous TumorMalignant Peritoneal NeoplasmMalignant Solid NeoplasmOvarian CarcinosarcomaOvarian Clear Cell AdenocarcinomaOvarian Endometrioid AdenocarcinomaOvarian High Grade Serous AdenocarcinomaOvarian Mucinous AdenocarcinomaOvarian Serous AdenocarcinomaOvarian Transitional Cell CarcinomaOvarian Undifferentiated CarcinomaPlatinum-Resistant Fallopian Tube CarcinomaPlatinum-Resistant Ovarian CarcinomaPlatinum-Resistant Primary Peritoneal CarcinomaPlatinum-Sensitive Ovarian CarcinomaPrimary Peritoneal CarcinosarcomaPrimary Peritoneal Clear Cell AdenocarcinomaPrimary Peritoneal Serous AdenocarcinomaPrimary Peritoneal Transitional Cell CarcinomaPrimary Peritoneal Undifferentiated CarcinomaUnresectable MelanomaUterine Corpus Carcinosarcoma
COMPLETED
Gemcitabine, Paclitaxel, Doxorubicin in Metastatic or Unresectable Bladder Cancer With Decreased Kidney Function
Description

This phase II trial is studying how well giving gemcitabine, paclitaxel, and doxorubicin together with pegfilgrastim works in treating patients with metastatic or unresectable bladder cancer or urinary tract cancer and kidney dysfunction. Drugs used in chemotherapy, such as gemcitabine, paclitaxel, and doxorubicin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Colony stimulating factors, such as pegfilgrastim, may increase the number of immune cells found in bone marrow or peripheral blood and may help the immune system recover from the side effects of chemotherapy. Giving combination chemotherapy together with pegfilgrastim may kill more tumor cells. Chemotherapy drugs may have different effects in patients who have changes in their kidney function.

ACTIVE_NOT_RECRUITING
Tocilizumab, Ipilimumab, and Nivolumab for the Treatment of Advanced Melanoma, Non-Small Cell Lung Cancer, or Urothelial Carcinoma
Description

This phase II trial investigates the side effects of tocilizumab, ipilimumab, and nivolumab in treating patients with melanoma, non-small cell lung cancer, or urothelial carcinoma that has spread to nearby tissue or lymph nodes (locally advanced). Immunotherapy with monoclonal antibodies, such as ipilimumab and nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Tocilizumab is a monoclonal antibody that may interfere with the immune system to decrease immune-related toxicities. Giving tocilizumab, ipilimumab, and nivolumab may kill more tumor cells.

Conditions
Clinical Stage III Cutaneous Melanoma AJCC v8Clinical Stage IV Cutaneous Melanoma AJCC v8Locally Advanced Bladder CarcinomaLocally Advanced Bladder Urothelial CarcinomaLocally Advanced Lung Non-Small Cell CarcinomaLocally Advanced Renal Pelvis CarcinomaLocally Advanced Renal Pelvis Urothelial CarcinomaLocally Advanced Ureter Urothelial CarcinomaLocally Advanced Urethral Urothelial CarcinomaMalignant Solid NeoplasmMetastatic Bladder CarcinomaMetastatic Bladder Urothelial CarcinomaMetastatic Lung Non-Small Cell CarcinomaMetastatic MelanomaMetastatic Renal Pelvis Urothelial CarcinomaMetastatic Ureter Urothelial CarcinomaMetastatic Urethral CarcinomaMetastatic Urethral Urothelial CarcinomaPathologic Stage III Cutaneous Melanoma AJCC v8Pathologic Stage IIIA Cutaneous Melanoma AJCC v8Pathologic Stage IIIB Cutaneous Melanoma AJCC v8Pathologic Stage IIIC Cutaneous Melanoma AJCC v8Pathologic Stage IIID Cutaneous Melanoma AJCC v8Pathologic Stage IV Cutaneous Melanoma AJCC v8Stage III Bladder Cancer AJCC v8Stage III Lung Cancer AJCC v8Stage III Renal Pelvis Cancer AJCC v8Stage III Ureter Cancer AJCC v8Stage III Urethral Cancer AJCC v8Stage IIIA Bladder Cancer AJCC v8Stage IIIA Lung Cancer AJCC v8Stage IIIB Bladder Cancer AJCC v8Stage IIIB Lung Cancer AJCC v8Stage IIIC Lung Cancer AJCC v8Stage IV Bladder Cancer AJCC v8Stage IV Lung Cancer AJCC v6Stage IV Renal Pelvis Cancer AJCC v8Stage IV Ureter Cancer AJCC v8Stage IV Urethral Cancer AJCC v8Stage IVA Lung Cancer AJCC v8Stage IVB Lung Cancer AJCC v8Unresectable Melanoma
ACTIVE_NOT_RECRUITING
Phase I-II, FIH, TROP2 ADC, Advanced Unresectable/Metastatic Solid Tumors, Refractory to Standard Therapies (KL264-01)
Description

A Phase I-II, First-in-Human Study of SKB264 (Sac-TMT; MK-2870) in Patients with Locally Advanced Unresectable/Metastatic Solid Tumors who are refractory to Available Standard Therapies. Patient must have historically documented, incurable, locally advanced or metastatic cancer that are refractory to standard therapies of one of the following types: 1. Triple negative breast cancer 2. Epithelial ovarian cancer 3. Non-small cell lung cancer 4. Gastric adenocarcinoma/Gastroesophageal junction adenocarcinoma 5. Small cell lung cancer 6. HR+/ HER2-breast cancer 7. Head and neck squamous cell carcinoma 8. Endometrial carcinoma 9. Urothelial carcinoma 10. Cervical cancer

ACTIVE_NOT_RECRUITING
Radiation Therapy and Durvalumab With or Without Tremelimumab in Treating Participants With Unresectable, Locally Advanced, or Metastatic Bladder Cancer
Description

This phase II trial studies the side effects and how well radiation therapy and durvalumab with or without tremelimumab work in treating participants with bladder cancer that cannot be removed by surgery, has spread to nearby tissue or lymph nodes, or that has spread to other parts of the body. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Monoclonal antibodies, such as durvalumab and tremelimumab, may interfere with the ability of tumor cells to grow and spread. It is not yet known whether giving radiation therapy and durvalumab with or without tremelimumab will work better in treating participants with bladder cancer.

TERMINATED
Atezolizumab With Bevacizumab in Previously Untreated Metastatic/Unresectable Urothelial Cancer
Description

This is a phase II study assessing the activity of bevacizumab combined with atezolizumab in metastatic urothelial carcinoma patients who are ineligible for cisplatin-based therapy.

ACTIVE_NOT_RECRUITING
A Study of Two Dosing Schedules of Atezolizumab in Combination With Gemcitabine and Cisplatin as First-Line Treatment for Metastatic Bladder Cancer
Description

The purpose of this study is to compare any good and bad effects the study drug atezolizumab has on the cancer when combined with the standard chemotherapy drugs gemcitabine and cisplatin (or GC) in two different dosing schedules: chemotherapy (GC) before atezolizumab vs. GC after atezolizumab.

TERMINATED
Veliparib, Cisplatin, and Gemcitabine Hydrochloride in Treating Patients With Advanced Biliary, Pancreatic, Urothelial, or Non-Small Cell Lung Cancer
Description

This phase I clinical trial is studying the side effects and best dose of veliparib and gemcitabine hydrochloride when given with cisplatin in treating patients with advanced biliary, pancreatic, urothelial, or non-small cell lung cancer. Veliparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cisplatin and gemcitabine hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more tumor cells. Veliparib may help cisplatin and gemcitabine hydrochloride work better by making tumor cells more sensitive to the drugs.

RECRUITING
Phase 1 Open-Label Study BL-M17D1 w/HER2-Expressing/Mutant Advanced or Metastatic Solid Tumors
Description

The objective of this study to evaluate the safety, tolerability, pharmacokinetics, and efficacy of BL-M17D1 in patients with HER2-Expressing or HER2-Mutant Advanced or Metastatic Solid Tumors.

RECRUITING
Comparison of In-Home Versus In-Clinic Administration of Subcutaneous Nivolumab Through Cancer CARE (Connected Access and Remote Expertise) Beyond Walls (CCBW) Program
Description

This phase II trial compares the impact of subcutaneous (SC) nivolumab given in an in-home setting to an in-clinic setting on cancer care and quality of life. Currently, most drug-related cancer care is conducted in clinic type centers or hospitals which may isolate patients from family, friends and familiar surroundings for many hours per day. This separation adds to the physical, emotional, social, and financial burden for patients and their families. Traveling to and from medical facilities costs time, money, and effort and can be a disadvantage to patients living in rural areas, those with low incomes or poor access to transport. Studies have shown that cancer patients often feel more comfortable and secure being cared for in their own home environments. SC nivolumab in-home treatment may be safe, tolerable and/or effective when compared to in-clinic treatment and may reduce the burden of cancer and improve the quality of life in cancer patients.

RECRUITING
Personalized Neoantigen Peptide-Based Vaccine in Combination With Pembrolizumab for Treatment of Advanced Solid Tumors
Description

This phase I trial tests the safety and tolerability of an experimental personalized vaccine when given by itself and with pembrolizumab in treating patients with solid tumor cancers that have spread to other places in the body (advanced). The experimental vaccine is designed target certain proteins (neoantigens) on individuals' tumor cells. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving the personalized neoantigen peptide-based vaccine with pembrolizumab may be safe and effective in treating patients with advanced solid tumors.

Conditions
Anatomic Stage III Breast Cancer AJCC v8Anatomic Stage IIIA Breast Cancer AJCC v8Anatomic Stage IIIB Breast Cancer AJCC v8Anatomic Stage IIIC Breast Cancer AJCC v8Anatomic Stage IV Breast Cancer AJCC v8Clinical Stage III Cutaneous Melanoma AJCC v8Clinical Stage III Gastric Cancer AJCC v8Clinical Stage III Gastroesophageal Junction Adenocarcinoma AJCC v8Clinical Stage III Merkel Cell Carcinoma AJCC v8Clinical Stage IV Cutaneous Melanoma AJCC v8Clinical Stage IV Gastric Cancer AJCC v8Clinical Stage IV Gastroesophageal Junction Adenocarcinoma AJCC v8Clinical Stage IV Merkel Cell Carcinoma AJCC v8Clinical Stage IVA Gastric Cancer AJCC v8Clinical Stage IVA Gastroesophageal Junction Adenocarcinoma AJCC v8Clinical Stage IVB Gastric Cancer AJCC v8Clinical Stage IVB Gastroesophageal Junction Adenocarcinoma AJCC v8Locally Advanced Cervical CarcinomaLocally Advanced Endometrial CarcinomaLocally Advanced Gastric AdenocarcinomaLocally Advanced Gastroesophageal Junction AdenocarcinomaLocally Advanced Head and Neck Squamous Cell CarcinomaLocally Advanced Hepatocellular CarcinomaLocally Advanced Lung Non-Small Cell CarcinomaLocally Advanced Malignant Solid NeoplasmLocally Advanced MelanomaLocally Advanced Merkel Cell CarcinomaLocally Advanced Renal Cell CarcinomaLocally Advanced Skin Squamous Cell CarcinomaLocally Advanced Triple-Negative Breast CarcinomaLocally Advanced Unresectable Breast CarcinomaLocally Advanced Unresectable Cervical CarcinomaLocally Advanced Unresectable Gastric AdenocarcinomaLocally Advanced Unresectable Gastroesophageal Junction AdenocarcinomaLocally Advanced Unresectable Renal Cell CarcinomaLocally Advanced Urothelial CarcinomaMetastatic Cervical CarcinomaMetastatic Endometrial CarcinomaMetastatic Gastric AdenocarcinomaMetastatic Gastroesophageal Junction AdenocarcinomaMetastatic Head and Neck Squamous Cell CarcinomaMetastatic Hepatocellular CarcinomaMetastatic Lung Non-Small Cell CarcinomaMetastatic Malignant Solid NeoplasmMetastatic MelanomaMetastatic Merkel Cell CarcinomaMetastatic Renal Cell CarcinomaMetastatic Skin Squamous Cell CarcinomaMetastatic Triple-Negative Breast CarcinomaMetastatic Urothelial CarcinomaPathologic Stage III Cutaneous Melanoma AJCC v8Pathologic Stage III Gastric Cancer AJCC v8Pathologic Stage III Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage III Merkel Cell Carcinoma AJCC v8Pathologic Stage IIIA Cutaneous Melanoma AJCC v8Pathologic Stage IIIA Gastric Cancer AJCC v8Pathologic Stage IIIA Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IIIB Cutaneous Melanoma AJCC v8Pathologic Stage IIIB Gastric Cancer AJCC v8Pathologic Stage IIIB Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IIIC Cutaneous Melanoma AJCC v8Pathologic Stage IIIC Gastric Cancer AJCC v8Pathologic Stage IIID Cutaneous Melanoma AJCC v8Pathologic Stage IV Cutaneous Melanoma AJCC v8Pathologic Stage IV Gastric Cancer AJCC v8Pathologic Stage IV Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IV Merkel Cell Carcinoma AJCC v8Pathologic Stage IVA Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IVB Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage III Gastric Cancer AJCC v8Postneoadjuvant Therapy Stage III Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IIIA Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IIIB Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IV Gastric Cancer AJCC v8Postneoadjuvant Therapy Stage IV Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IVA Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IVB Gastroesophageal Junction Adenocarcinoma AJCC v8Prognostic Stage III Breast Cancer AJCC v8Prognostic Stage IIIA Breast Cancer AJCC v8Prognostic Stage IIIB Breast Cancer AJCC v8Prognostic Stage IIIC Breast Cancer AJCC v8Prognostic Stage IV Breast Cancer AJCC v8Skin Squamous Cell CarcinomaStage III Cervical Cancer AJCC v8Stage III Cutaneous Squamous Cell Carcinoma of the Head and Neck AJCC v8Stage III Hepatocellular Carcinoma AJCC v8Stage III Lung Cancer AJCC v8Stage III Renal Cell Cancer AJCC v8Stage III Uterine Corpus Cancer AJCC v8Stage IIIA Cervical Cancer AJCC v8Stage IIIA Hepatocellular Carcinoma AJCC v8Stage IIIA Lung Cancer AJCC v8Stage IIIA Uterine Corpus Cancer AJCC v8Stage IIIB Cervical Cancer AJCC v8Stage IIIB Hepatocellular Carcinoma AJCC v8Stage IIIB Lung Cancer AJCC v8Stage IIIB Uterine Corpus Cancer AJCC v8Stage IIIC Lung Cancer AJCC v8Stage IIIC Uterine Corpus Cancer AJCC v8Stage IIIC1 Uterine Corpus Cancer AJCC v8Stage IIIC2 Uterine Corpus Cancer AJCC v8Stage IV Cervical Cancer AJCC v8Stage IV Cutaneous Squamous Cell Carcinoma of the Head and Neck AJCC v8Stage IV Hepatocellular Carcinoma AJCC v8Stage IV Lung Cancer AJCC v8Stage IV Renal Cell Cancer AJCC v8Stage IV Uterine Corpus Cancer AJCC v8Stage IVA Cervical Cancer AJCC v8Stage IVA Hepatocellular Carcinoma AJCC v8Stage IVA Lung Cancer AJCC v8Stage IVA Uterine Corpus Cancer AJCC v8Stage IVB Cervical Cancer AJCC v8Stage IVB Hepatocellular Carcinoma AJCC v8Stage IVB Lung Cancer AJCC v8Stage IVB Uterine Corpus Cancer AJCC v8Triple-Negative Breast CarcinomaUnresectable Cervical CarcinomaUnresectable Endometrial CarcinomaUnresectable Gastric AdenocarcinomaUnresectable Gastroesophageal Junction AdenocarcinomaUnresectable Head and Neck Squamous Cell CarcinomaUnresectable Hepatocellular CarcinomaUnresectable Lung Non-Small Cell CarcinomaUnresectable Malignant Solid NeoplasmUnresectable MelanomaUnresectable Merkel Cell CarcinomaUnresectable Renal Cell CarcinomaUnresectable Skin Squamous Cell CarcinomaUnresectable Triple-Negative Breast CarcinomaUnresectable Urothelial Carcinoma
ACTIVE_NOT_RECRUITING
Sonidegib and Pembrolizumab in Treating Patients With Advanced Solid Tumors
Description

This phase I trial studies the best dose of sonidegib when given together with pembrolizumab and to see how well they work in treating patients with solid tumor that has spread to other places in the body (advanced). Sonidegib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving sonidegib and pembrolizumab may work better than standard treatment in treating patients with advanced solid tumors.

COMPLETED
A Study of CDX-1140 (CD40) as Monotherapy or in Combination in Patients With Advanced Malignancies
Description

This is a study to determine the maximum tolerated dose (MTD) for CDX-1140 (CD40 antibody), either alone or in combination with CDX-301 (FLT3L), pembrolizumab, or chemotherapy and to further evaluate its tolerability and efficacy in expansion cohorts once the MTD is determined.

RECRUITING
Management of Cisplatin-Ineligible Patients With Metastatic Bladder Cancer and The Role of Geriatric Assessments
Description

The goal of this study is to better understand how to best treat participants with advanced bladder cancer who may not be able to tolerate all of the chemotherapy drugs that have been shown to be effective. In this study, investigators are assessing the role of the survey, the Geriatric-8, and its ability to predict outcomes in older participants undergoing cancer treatments. Additionally, investigators are evaluating the differential impact of treatments on quality of life in an older and at risk population.

ACTIVE_NOT_RECRUITING
Veliparib, Paclitaxel, and Carboplatin in Treating Patients With Solid Tumors That Are Metastatic or Cannot Be Removed by Surgery and Liver or Kidney Dysfunction
Description

This phase I trial studies the side effects and the best dose of veliparib when given together with paclitaxel and carboplatin in treating patients with solid tumors that are metastatic or cannot be removed by surgery and liver or kidney dysfunction. Veliparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as paclitaxel and carboplatin, work in different ways to stop the growth of tumor cells either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving veliparib together with paclitaxel and carboplatin may kill more tumor cells.