10 Clinical Trials for Various Conditions
This randomized phase III trial studies radiation therapy and cisplatin with triapine to see how well they work compared to the standard radiation therapy and cisplatin alone in treating patients with newly diagnosed stage IB2, II, or IIIB-IVA cervical cancer or stage II-IVA vaginal cancer. Radiation therapy uses high energy protons to kill tumor cells and shrink tumors. Drugs used in chemotherapy, such as cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Triapine may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. It is not yet known whether radiation therapy and cisplatin are more effective with triapine in treating cervical or vaginal cancer.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses x-rays to damage tumor cells. Drugs such as capecitabine may make the tumor cells more sensitive to radiation therapy. PURPOSE: Phase I trial to study the effectiveness of capecitabine in combination with radiation therapy in treating patients who have unresectable, residual, or recurrent colorectal cancer located in the pelvis.
Interleukin-12 may kill tumor cells by stopping blood flow to the tumor and by stimulating a person's white blood cells to kill cancer cells. Monoclonal antibodies such as trastuzumab can locate tumor cells and either kill them or deliver tumor-killing substances to them without harming normal cells. Phase I trial to study the effectiveness of interleukin-12 and trastuzumab in treating patients who have cancer that has high levels of HER2/neu and has not responded to previous therapy
RATIONALE: Monoclonal antibodies, such as RAV12, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. PURPOSE: This phase I trial is studying the side effects and best dose of RAV12 in treating patients with metastatic or recurrent adenocarcinoma.
RATIONALE: MS-275 may stop the growth of cancer cells by blocking the enzymes necessary for their growth. PURPOSE: This phase I trial is studying the side effects and best dose of MS-275 in treating patients with advanced solid tumors or lymphoma.
Phase I trial to study the effectiveness of trastuzumab plus R115777 in treating patients who have advanced or metastatic cancer. Monoclonal antibodies such as trastuzumab can locate tumor cells and either kill them or deliver tumor-killing substances to them without harming normal cells. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining trastuzumab with R115777 may kill more tumor cells.
RATIONALE: Inserting a gene that has been created in the laboratory into a person's white blood cells may make the body build an immune response to kill cancer cells. PURPOSE: Phase I trial to study the effectiveness of gene therapy in treating patients who have cancer that has not responded to previous therapy.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: Phase I trial to study the effectiveness of aminocamptothecin in treating patients with advanced cancer of the peritoneal cavity.
RATIONALE: Studying protein expression in sentinel lymph node tissue from patients with cancer in the laboratory may help doctors identify and learn more about biomarkers related to cancer. It may also help the study of cancer in the future. PURPOSE: This laboratory study is evaluating OX-40 protein expression in the sentinel lymph nodes of patients with cancer.
TScan Therapeutics is developing cellular therapies across multiple solid tumors in which autologous participant-derived engeneered T cells are engineered to express a T cell receptor that recognizes cancer-associated antigens presented on specific Human Leukocyte Antigen (HLA) molecules. This is a multi-center, non-randomized, multi-arm, open-label, basket study evaluating the safety and preliminary efficacy of single and repeat dose regimens of TCR'Ts as monotherapies and as T-Plex combinations after lymphodepleting chemotherapy in participants with locally advanced, metastatic solid tumors disease.