Treatment Trials

66 Clinical Trials for Various Conditions

Focus your search

COMPLETED
Studying Genes in Samples From Younger Patients With Relapsed Acute Lymphoblastic Leukemia
Description

This laboratory study is looking into genes in samples from younger patients with relapsed acute lymphoblastic leukemia. Studying samples of tissue from patients with cancer in the laboratory may help doctors learn more about changes that occur in DNA and identify biomarkers related to cancer. It may also help doctors find better ways to treat cancer.

WITHDRAWN
Studying Body Mass Index in Younger Patients Who Are Receiving Treatment for High-Risk Acute Lymphoblastic Leukemia
Description

This clinical trial is studying body mass index in younger patients receiving prednisone/prednisolone, vincristine, daunorubicin, and pegaspargase for high-risk acute lymphoblastic leukemia. Studying samples of blood from patients with cancer in the laboratory may help doctors learn more about the affect of body mass index on the way anticancer drugs work in the body. It may also help doctors predict how patients will respond to treatment

COMPLETED
Treosulfan, Fludarabine Phosphate, and Total-Body Irradiation Before Donor Stem Cell Transplant in Treating Patients With High-Risk Acute Myeloid Leukemia, Myelodysplastic Syndrome, Acute Lymphoblastic Leukemia
Description

This phase II trial is studying how well giving treosulfan together with fludarabine phosphate and total-body irradiation followed by donor stem cell transplant works in treating patients with high-risk acute myeloid leukemia, myelodysplastic syndrome, acute lymphoblastic leukemia. Giving chemotherapy, such as treosulfan and fludarabine phosphate, and total-body irradiation before a donor bone marrow or peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus and methotrexate before and after transplant may stop this from happening

COMPLETED
Nilotinib and Imatinib Mesylate After Donor Stem Cell Transplant in Treating Patients With ALL or CML
Description

This phase I/II trial is studying the side effects and best way to give nilotinib when given alone or sequentially after imatinib mesylate after donor stem cell transplant in treating patients with acute lymphoblastic leukemia or chronic myelogenous leukemia. Nilotinib and imatinib mesylate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

COMPLETED
Risk-Group Classification of Patients With Newly Diagnosed Acute Lymphoblastic Leukemia
Description

This clinical trial is studying risk-group classification of patients with newly diagnosed acute lymphoblastic leukemia. Developing a risk-group classification guide may help doctors assign patients with newly diagnosed acute lymphoblastic leukemia to treatment clinical trials.

COMPLETED
Brain Function in Young Patients Receiving Methotrexate for Acute Lymphoblastic Leukemia
Description

This clinical trial is looking at brain function in young patients receiving methotrexate for acute lymphoblastic leukemia. Learning about the long-term effects of methotrexate on brain function may help doctors plan cancer treatment.

COMPLETED
Alemtuzumab and Combination Chemotherapy in Treating Patients With Untreated Acute Lymphoblastic Leukemia
Description

This phase I/II trial studies the side effects and best dose of alemtuzumab when given together with combination chemotherapy and to see how well it works in treating patients with untreated acute lymphoblastic leukemia. Monoclonal antibodies, such as alemtuzumab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Drugs used in chemotherapy also work in different ways to kill cancer cells or stop them from growing. Giving alemtuzumab together with combination chemotherapy may be a better way to block cancer growth.

COMPLETED
Rituximab, Rasburicase, and Combination Chemotherapy in Treating Young Patients With Newly Diagnosed Advanced B-Cell Leukemia or Lymphoma
Description

Phase II trial to study the effectiveness of combining rituximab and rasburicase with combination chemotherapy in treating young patients who have newly diagnosed advanced B-cell leukemia or lymphoma. Monoclonal antibodies such as rituximab can locate cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells. Drugs used in chemotherapy work in different ways to stop cancer cells from dividing so they stop growing or die. Combining more than one drug with rituximab may kill more cancer cells. Chemoprotective drugs such as rasburicase may protect kidney cells from the side effects of chemotherapy.

COMPLETED
Total-Body Irradiation and Fludarabine Phosphate Followed by Donor Peripheral Blood Stem Cell Transplant in Treating Patients With Hematologic Malignancies or Kidney Cancer
Description

This phase I/II trial studies whether a new kind of blood stem cell (bone marrow) transplant, that may be less toxic, is able to treat underlying blood cancer. Stem cells are "seed cells" necessary to make blood cells. Researchers want to see if using less radiation and less chemotherapy with new immune suppressing drugs will enable a stem cell transplant to work. Researchers are hoping to see a mixture of recipient and donor stem cells after transplant. This mixture of donor and recipient stem cells is called "mixed-chimerism". Researchers hope to see these donor cells eliminate tumor cells. This is called a "graft-versus-leukemia" response.

COMPLETED
Combination Chemotherapy in Treating Patients With Newly Diagnosed Acute Lymphoblastic Leukemia
Description

Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Combining more than one drug may kill more cancer cells. This phase II trial is studying several different combination chemotherapy regimens to see how well they work in treating patients with newly diagnosed acute lymphoblastic leukemia

COMPLETED
Fludarabine Phosphate and Total-Body Radiation Followed by Donor Peripheral Blood Stem Cell Transplant and Immunosuppression in Treating Patients With Hematologic Malignancies
Description

This clinical trial studies fludarabine phosphate and total-body radiation followed by donor peripheral blood stem cell transplant and immunosuppression in treating patients with hematologic malignancies. Giving chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving total-body irradiation together with fludarabine phosphate, cyclosporine, and mycophenolate mofetil before transplant may stop this from happening.

Conditions
Acute Myeloid Leukemia/Transient Myeloproliferative DisorderAcute Undifferentiated LeukemiaAdult Acute Lymphoblastic Leukemia in RemissionAdult Acute Myeloid Leukemia in RemissionAdult Acute Myeloid Leukemia With 11q23 (MLL) AbnormalitiesAdult Acute Myeloid Leukemia With Del(5q)Adult Acute Myeloid Leukemia With Inv(16)(p13;q22)Adult Acute Myeloid Leukemia With t(15;17)(q22;q12)Adult Acute Myeloid Leukemia With t(16;16)(p13;q22)Adult Acute Myeloid Leukemia With t(8;21)(q22;q22)Adult Nasal Type Extranodal NK/T-cell LymphomaAnaplastic Large Cell LymphomaAngioimmunoblastic T-cell LymphomaBlastic Plasmacytoid Dendritic Cell NeoplasmChildhood Acute Lymphoblastic Leukemia in RemissionChildhood Acute Myeloid Leukemia in RemissionChildhood Burkitt LymphomaChildhood Diffuse Large Cell LymphomaChildhood Immunoblastic Large Cell LymphomaChildhood Myelodysplastic SyndromesChildhood Nasal Type Extranodal NK/T-cell LymphomaChronic Myelomonocytic LeukemiaCutaneous B-cell Non-Hodgkin Lymphomade Novo Myelodysplastic SyndromesExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueHepatosplenic T-cell LymphomaIntraocular LymphomaJuvenile Myelomonocytic LeukemiaMast Cell LeukemiaMyelodysplastic/Myeloproliferative Neoplasm, UnclassifiableNodal Marginal Zone B-cell LymphomaNoncutaneous Extranodal LymphomaPeripheral T-cell LymphomaPost-transplant Lymphoproliferative DisorderPreviously Treated Myelodysplastic SyndromesPrimary Systemic AmyloidosisRecurrent Adult Acute Lymphoblastic LeukemiaRecurrent Adult Acute Myeloid LeukemiaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Grade III Lymphomatoid GranulomatosisRecurrent Adult Hodgkin LymphomaRecurrent Adult Immunoblastic Large Cell LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Adult T-cell Leukemia/LymphomaRecurrent Childhood Acute Lymphoblastic LeukemiaRecurrent Childhood Acute Myeloid LeukemiaRecurrent Childhood Anaplastic Large Cell LymphomaRecurrent Childhood Grade III Lymphomatoid GranulomatosisRecurrent Childhood Large Cell LymphomaRecurrent Childhood Lymphoblastic LymphomaRecurrent Childhood Small Noncleaved Cell LymphomaRecurrent Cutaneous T-cell Non-Hodgkin LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Mycosis Fungoides/Sezary SyndromeRecurrent Small Lymphocytic LymphomaRecurrent/Refractory Childhood Hodgkin LymphomaRefractory Chronic Lymphocytic LeukemiaRefractory Hairy Cell LeukemiaRefractory Multiple MyelomaSmall Intestine LymphomaSplenic Marginal Zone LymphomaStage II Multiple MyelomaStage III Multiple MyelomaT-cell Large Granular Lymphocyte LeukemiaTesticular LymphomaUntreated Adult Acute Lymphoblastic LeukemiaUntreated Adult Acute Myeloid LeukemiaUntreated Childhood Acute Lymphoblastic LeukemiaUntreated Childhood Acute Myeloid Leukemia and Other Myeloid MalignanciesWaldenström Macroglobulinemia
COMPLETED
S9007, Study of Bone Marrow and Blood Samples From Patients With Leukemia or Other Hematopoietic Cancers
Description

RATIONALE: Studying samples of bone marrow and blood from patients with cancer in the laboratory may help doctors learn more about changes that occur in DNA and identify biomarkers related to cancer. It may also help doctors predict how patients will respond to treatment. PURPOSE: This research study is looking at bone marrow and blood samples from patients with leukemia or other hematopoietic cancers.

COMPLETED
S9910, Collecting and Storing Blood and Bone Marrow Samples From Patients With Hematologic Cancer
Description

RATIONALE: Collecting and storing samples of blood and bone marrow from patients with cancer to study in the laboratory may help doctors learn more about diagnosing cancer and how well patients will respond to treatment. PURPOSE: The purpose of this study is to collect and store blood and bone marrow samples from patients with hematologic cancer to be tested in the laboratory.

COMPLETED
Collecting Tissue Samples From Patients With Leukemia or Other Blood Disorders Planning to Enroll in an ECOG Leukemia Treatment Clinical Trial
Description

RATIONALE: Collecting and storing samples of blood and bone marrow from patients with cancer to study in the laboratory may help doctors learn more about diagnosing cancer and determine a patient's eligibility for a treatment clinical trial. It may also help the study of cancer in the future. PURPOSE: This laboratory study is collecting tissue samples from patients with leukemia or other blood disorders who are planning to enroll in an ECOG leukemia treatment clinical trial.

WITHDRAWN
Recombinant Human Mannose-Binding Lectin (MBL) in Treating Young Patients With MBL Deficiency and Fever and Neutropenia
Description

RATIONALE: Recombinant human mannose-binding lectin (MBL) may be effective in preventing infection in young patients with fever and neutropenia receiving chemotherapy for blood disease or cancer. PURPOSE: This phase I trial is studying the side effects and best dose of recombinant human mannose-binding lectin in treating young patients with MBL deficiency and fever and neutropenia.

UNKNOWN
Different Therapies in Treating Infants With Newly Diagnosed Acute Leukemia
Description

RATIONALE: Giving chemotherapy before a donor stem cell transplant helps stop the growth of cancer cells. It also helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving cyclosporine, methotrexate, leucovorin, and antithymocyte globulin before and after transplant may stop this from happening. It is not yet known which treatment regimen is most effective in treating acute leukemia. PURPOSE: This randomized clinical trial is studying how well different therapies work in treating infants with newly diagnosed acute leukemia.

Conditions
ACTIVE_NOT_RECRUITING
Helical Tomotherapy, Fludarabine Phosphate, and Melphalan Followed By Allo-HSCT in Hematological Malignancies
Description

RATIONALE: Giving chemotherapy drugs, such as fludarabine phosphate and melphalan, and HT before a donor stem cell transplant helps stop the growth of cancer cells. It also helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving HT together with fludarabine phosphate and melphalan before a transplant may stop this from happening. PURPOSE: This clinical trial studies helical tomotherapy (HT), fludarabine phosphate, and melphalan followed by donor stem cell transplant in treating patients with hematologic malignancies.

WITHDRAWN
Ovarian Damage in Young Premenopausal Women Undergoing Chemotherapy for Cancer
Description

RATIONALE: Comparing results of diagnostic procedures, such as ultrasound, done before, during, and after chemotherapy may help doctors learn about the side effects of chemotherapy and help plan the best treatment. PURPOSE: This clinical trial is studying ovarian damage in young premenopausal women undergoing chemotherapy for cancer.

COMPLETED
Treatment of Acute Lymphoblastic Leukemia in Children
Description

RATIONALE: L-asparaginase is an important component of treatment for childhood acute lymphoblastic leukemia, but is also associated with notable side-effects, including hypersensitivity, pancreatitis, and thrombosis. We have previously reported that patients with acute lymphoblastic leukemia in whom asparaginase treatment was discontinued because of intolerable side-effects had survival outcomes that were inferior to those who received all or nearly all of their intended doses. Two bacterial sources of asparaginase exist: Escherichia coli (E coli) and Erwinia chrysanthemia (Erwinia). Generally, the E coli-derived enzyme has been used as front-line therapy and the Erwinia-derived preparation has been reserved for patients who develop hypersensitivity reactions. Pegylated E coli asparaginase (PEG-asparaginase) has a longer half-life and is potentially less immunogenic than native E coli L-asparaginase, and has been used as the initial asparaginase preparation in some pediatric acute lymphoblastic leukemia treatment regimens. PURPOSE: Although the pharmacokinetics of each of these asparaginase preparations: intravenous PEG-asparaginase (IV-PEG) and intramuscular native E coli L-asparaginase (IM-EC) have been well characterized, their relative efficacy and toxicity have not been studied extensively.

COMPLETED
Glutamic Acid in Reducing Nerve Damage Caused by Vincristine in Young Patients With Cancer
Description

RATIONALE: Glutamic acid may help lessen or prevent nerve damage caused by vincristine. It is not yet known whether glutamic acid is more effective than a placebo in preventing nerve damage in patients receiving vincristine for Wilms' tumor, rhabdomyosarcoma, acute lymphoblastic leukemia, or non-Hodgkin's lymphoma. PURPOSE: This randomized phase III trial is studying glutamic acid to see how well it works compared to a placebo in reducing nerve damage caused by vincristine in young patients receiving vincristine for Wilms' tumor, rhabdomyosarcoma, acute lymphoblastic leukemia, or non-Hodgkin's lymphoma.

COMPLETED
Glutamine in Treating Neuropathy Caused by Vincristine in Young Patients With Lymphoma, Leukemia, or Solid Tumors
Description

RATIONALE: Glutamine may help lessen neuropathy caused by chemotherapy. It is not yet known whether glutamine is more effective than a placebo in treating neuropathy caused by vincristine. PURPOSE: This randomized phase II trial is studying glutamine to see how well it works compared to a placebo in treating neuropathy caused by vincristine in young patients with lymphoma, leukemia, or solid tumors.

COMPLETED
Donor Bone Marrow Transplant in Treating Young Patients With Cancer or a Non-Cancerous Disease
Description

RATIONALE: A bone marrow transplant from a brother or sister may be able to replace blood-forming cells that were destroyed by chemotherapy or radiation therapy. Colony-stimulating factors, such as G-CSF, cause the body to make blood cells. Giving G-CSF to the donor may help the body make more stem cells that can be collected for bone marrow transplant and may cause fewer side effects in the patient after the transplant. PURPOSE: This phase I/II trial is studying the side effects of donor bone marrow transplant and to see how well it works in treating young patients with cancer or a non-cancerous disease.

COMPLETED
Traumeel® S in Preventing and Treating Mucositis in Young Patients Undergoing Stem Cell Transplantation
Description

RATIONALE: Traumeel® S (a mouth rinse) may be effective in preventing or decreasing the severity of oral mucositis caused by chemotherapy in young patients who are undergoing stem cell transplantation. PURPOSE: This randomized clinical trial is studying how well Traumeel® S works in preventing or treating mucositis in young patients who are receiving chemotherapy with or without total-body irradiation before undergoing stem cell transplantation.

COMPLETED
Voriconazole Compared With Itraconazole in Preventing Fungal Infections in Patients Undergoing Allogeneic Hematopoietic Stem Cell Transplantation
Description

RATIONALE: Antifungals, such as voriconazole and itraconazole, may be effective in preventing fungal infections in patients who are undergoing allogeneic stem cell transplantation. PURPOSE: This randomized clinical trial is studying voriconazole to see how well it works compared to itraconazole in preventing fungal infections in patients who are undergoing allogeneic hematopoietic stem cell transplantation.

Conditions
COMPLETED
Voriconazole in Preventing Fungal Infections in Children With Neutropenia After Chemotherapy
Description

RATIONALE: Voriconazole may be effective in preventing systemic fungal infections following chemotherapy. PURPOSE: Phase II trial to study the effectiveness of voriconazole in preventing systemic fungal infections in children who have neutropenia after receiving chemotherapy for leukemia, lymphoma, or aplastic anemia or in preparation for bone marrow or stem cell transplantation.

COMPLETED
Cyproheptadine and Megestrol in Preventing Weight Loss in Children With Cachexia Caused By Cancer or Cancer Treatment
Description

RATIONALE: Cyproheptadine and megestrol may improve appetite and help prevent weight loss in children with cancer. PURPOSE: This phase II trial is studying how well cyproheptadine and megestrol work in improving appetite and preventing weight loss in children with cachexia caused by cancer or cancer treatment.

COMPLETED
Donor Umbilical Cord Blood Transplantation in Treating Patients With Leukemia, Lymphoma, or Nonmalignant Hematologic Disorders
Description

RATIONALE: Umbilical cord blood transplantation may be able to replace immune cells that were destroyed by the chemotherapy or radiation therapy that was used to kill cancer cells. PURPOSE: Phase II trial to study the effectiveness of allogeneic umbilical cord blood transplantation in treating patients who have leukemia, lymphoma, or nonmalignant hematologic disorders.

COMPLETED
Sargramostim in Reducing Graft-Versus-Host Disease in Patients Who Are Undergoing Donor Stem Cell Transplantation for Hematologic Cancer or Aplastic Anemia
Description

RATIONALE: Colony-stimulating factors such as sargramostim may increase the number of immune cells found in bone marrow or peripheral blood and may help a person's immune system recover from the side effects of chemotherapy or radiation therapy. Giving sargramostim to the stem cell donor and the patient may reduce the chance of developing graft-versus-host disease following stem cell transplantation. PURPOSE: Clinical trial to study the effectiveness of sargramostim in decreasing graft-versus-host disease in patients who are undergoing donor stem cell transplantation for hematologic cancer or aplastic anemia.

COMPLETED
Valacyclovir in Preventing Cytomegalovirus Infection in Patients Who Are Undergoing Donor Stem Cell Transplantation
Description

RATIONALE: Antivirals such as valacyclovir act against viruses and may be effective in preventing cytomegalovirus. It is not yet known if valacyclovir is effective in preventing cytomegalovirus in patients undergoing stem cell transplantation. PURPOSE: Randomized phase III trial to determine the effectiveness of valacyclovir in preventing cytomegalovirus in patients who are undergoing donor stem cell transplantation.

Conditions
COMPLETED
Combination Chemotherapy With or Without Donor Bone Marrow Transplantation in Treating Infants With Previously Untreated Acute Lymphoblastic Leukemia
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Giving the drugs in different combinations may kill more cancer cells. Bone marrow transplantation allows the doctor to give higher doses of chemotherapy and kill more cancer cells. PURPOSE: Phase II trial to compare the effectiveness of combination chemotherapy with or without donor bone marrow transplantation in treating infants who have previously untreated acute lymphoblastic leukemia.

Conditions