106 Clinical Trials for Various Conditions
This phase II trial studies how well gemcitabine works in preventing urothelial cancer from coming back within the bladder (intravesical recurrence) in patients with upper urinary tract urothelial cancer undergoing radical nephroureterectomy. Drugs used in chemotherapy, such as gemcitabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Instilling gemcitabine into the bladder during surgery, may reduce the chance of recurrence of upper urinary tract urothelial cancer.
This phase IV trial tests the impact of standard of care enfortumab vedotin and pembrolizumab followed by removal of all or part of the bladder (cytoreductive cystectomy) and/or removal of all or part of the tube that carriers urine from the kidneys to the bladder (ureterectomy) on outcomes in patients with bladder and upper urothelial tract that has spread to nearby tissue or lymph nodes (locally advanced) or that has spread from where it first started (primary site) to other places in the body (metastatic). Enfortumab vedotin is a monoclonal antibody, enfortumab, linked to an anticancer drug called vedotin. It works by helping the immune system to slow or stop the growth of tumor cells. Enfortumab attaches to a protein called nectin-4 on tumor cells in a targeted way and delivers vedotin to kill them. It is a type of antibody-drug conjugate. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the tumor and may interfere with the ability of tumor cells to grow and spread. Giving standard of care enfortumab vedotin and pembrolizumab followed by cytoreductive cystectomy and/or ureterectomy (CC/U) may improve outcomes in patients with locally advanced or metastatic bladder or upper urothelial tract cancer.
This phase II trial tests how well enfortumab vedotin (EV) and pembrolizumab works in treating patients with bladder cancer of variant histology (a group of less common types of bladder cancer) that have spread to nearby tissue or lymph nodes (locally advanced) or that has spread from where it first started (primary site) to other places in the body (metastatic). Enfortumab vedotin is a monoclonal antibody, enfortumab, linked to an anticancer drug called vedotin. Enfortumab attaches to a protein called nectin-4 on cancer cells in a targeted way and delivers vedotin to kill them. It is a type of antibody-drug conjugate. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving enfortumab vedotin and pembrolizumab may kill more tumor cells in patients with locally advanced or metastatic bladder cancer of variant histology.
This phase III trial compares the effect of adding cabozantinib to avelumab versus avelumab alone in treating patients with urothelial cancer that has spread from where it first started (primary site) to other places in the body (metastatic). Cabozantinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as avelumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving cabozantinib and avelumab together may further shrink the cancer or prevent it from returning/progressing.
This phase Ib trial evaluates the best dose, potential benefits, and/or side effects of erdafitinib in combination with enfortumab vedotin in treating patients with bladder cancer that has spread from where it first started (primary site) to other places in the body (metastatic) and possesses genetic alterations in FGFR2/3 genes. Erdafitinib is in a class of medications called kinase inhibitors. It works by blocking the action of an abnormal FGFR protein that signals cancer cells to multiply. This may help keep cancer cells from growing and may kill them. Enfortumab vedotin is a monoclonal antibody, enfortumab, linked to an anticancer drug called vedotin. It works by helping the immune system to slow or stop the growth of cancer cells. Enfortumab attaches to a protein called nectin-4 on cancer cells in a targeted way and delivers vedotin to kill them. It is a type of antibody-drug conjugate. Giving erdafitinib in combination with enfortumab vedotin may shrink or stabilize metastatic bladder cancer with alterations in FGFR 2/3 genes.
This phase II trial studies the effect of nivolumab in urothelial cancer that has spread to other places in the body (metastatic), specifically in patients with aberrations in ARID1A gene (ARID1A mutation) and correlate with expression level of CXCL13, an immune cytokine. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving nivolumab may help control the disease in patients with urothelial cancer or solid tumors. This trial aims at enriching patient selection based on genomic and immunological attributes of the tumor.
This phase II trial investigates the side effects of tocilizumab, ipilimumab, and nivolumab in treating patients with melanoma, non-small cell lung cancer, or urothelial carcinoma that has spread to nearby tissue or lymph nodes (locally advanced). Immunotherapy with monoclonal antibodies, such as ipilimumab and nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Tocilizumab is a monoclonal antibody that may interfere with the immune system to decrease immune-related toxicities. Giving tocilizumab, ipilimumab, and nivolumab may kill more tumor cells.
This research study is an open label study designed to evaluate the safety and translational correlative changes of the combination of propranolol hydrochloride and immune checkpoint inhibitors (ICI) in subjects with urothelial carcinoma.
This study is to collect and validate regulatory-grade real-world data (RWD) in oncology using the novel, Master Observational Trial construct. This data can be then used in real-world evidence (RWE) generation. It will also create reusable infrastructure to allow creation or affiliation with many additional RWD/RWE efforts both prospective and retrospective in nature.
This phase II trial studies the side effects of avelumab and how well it works in combination with fluorouracil and mitomycin or cisplatin and radiation therapy in treating participants with muscle-invasive bladder cancer. Monoclonal antibodies, such as avelumab, may interfere with the ability of cancer cells to grow and spread. Drugs used in chemotherapy, such as fluorouracil, mitomycin, and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy beams to kill tumor cells and shrink tumors. Giving avelumab with chemotherapy and radiotherapy may work better in treating participants with muscle-invasive bladder cancer.
This phase I trial studies the best dose and side effects of abexinostat and how well it works with given together with pembrolizumab in treating participants with microsatellite instability (MSI) solid tumors that have spread to other places in the body. Abexinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as pembrolizumab, may interfere with the ability of tumor cells to grow and spread. Giving abexinostat and pembrolizumab may work better in treating participants with solid tumors.
This phase II trial studies how well atezolizumab when given with glycosylated recombinant human interleukin-7 (CYT107) works in treating patients with urothelial carcinoma that has spread to nearby tissue or lymph nodes (locally advanced), cannot be removed by surgery (inoperable), or has spread to other places in the body (metastatic). Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. CYT107 is a biological product naturally made by the body that may stimulate the immune system to destroy tumor cells. Giving atezolizumab and CYT107 may work better in treating patients with locally advanced, inoperable, or metastatic urothelial carcinoma compared to atezolizumab alone.
This is a comparative study using resected/ biopsied tumors samples collected from renal cell carcinoma and urothelial carcinoma patients who underwent surgical removal of lesions, followed by immune checkpoint blockade (ICB) treatment targting programmed cell death 1 (PD1) but developed new lesions later were also removed and stored in the biosample repository (BSR). The histology and genomic analysis of the pre-treatment and metastatic samples from the same patient would be used to find out the changes that may have lead to metastasis. Also, metastatic samples from ICB naive patients would be collected and compared with those from ICB treated patients to find out if the metastasis in treated patients was due to development of reistance.
This phase II trial studies the side effects of atezolizumab with or without eribulin mesylate and how well they work in treating patients with urothelial cancer that has come back (recurrent), spread to nearby tissues or lymph nodes (locally advanced), or spread from where it first started (primary site) to other places in the body (metastatic). Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, such as eribulin mesylate, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving atezolizumab and eribulin mesylate may work better at treating urothelial cancer compared to atezolizumab alone.
This pilot phase I trial studies the side effects of durvalumab and tremelimumab in treating patients with muscle-invasive, high-risk urothelial cancer that cannot be treated with cisplatin-based therapy before surgery. Immunotherapy with monoclonal antibodies, such as durvalumab and tremelimumab, may induce changes in the body's immune system and may interfere with the ability of tumor cells to grow and spread.
This phase I trial studies the side effects and best doses of cabozantinib s-malate and nivolumab with or without ipilimumab in treating patients with genitourinary (genital and urinary organ) tumors that have spread from where it first started (primary site) to other places in the body (metastatic). Cabozantinib s-malate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. It is not yet known whether giving cabozantinib s-malate and nivolumab alone or with ipilimumab works better in treating patients with genitourinary tumors.
The main purpose of this study is to find out the dose of enzalutamide that can be safely given with gemcitabine and cisplatin in patients with advanced bladder cancer. Researchers also want to find out the side effects of these drugs when given together. This study will also help in finding out the effect on tumor of the combination of enzalutamide, gemcitabine and cisplatin.
This phase II trial studies how well gemcitabine hydrochloride and eribulin mesylate work in treating patients with bladder cancer that has spread to other places in the body or cannot be removed by surgery. Drugs used in chemotherapy, such as gemcitabine hydrochloride and eribulin mesylate, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
This phase II trial studies how well afatinib dimaleate works in treating patients with urothelial cancer that cannot be removed surgically and has grown after treatment with standard first-line chemotherapy. Afatinib dimaleate may turn off the function of the epidermal growth factor (EGF) and human epidermal growth factor receptor 2 (HER2) receptors, which may slow the growth of cancer cells or cause some of the cells to die.
The iCaRe2 is a multi-institutional resource created and maintained by the Fred \& Pamela Buffett Cancer Center to collect and manage standardized, multi-dimensional, longitudinal data and biospecimens on consented adult cancer patients, high-risk individuals, and normal controls. The distinct characteristic of the iCaRe2 is its geographical coverage, with a significant percentage of small and rural hospitals and cancer centers. The iCaRe2 advances comprehensive studies of risk factors of cancer development and progression and enables the design of novel strategies for prevention, screening, early detection and personalized treatment of cancer. Centers with expertise in cancer epidemiology, genetics, biology, early detection, and patient care can collaborate by using the iCaRe2 as a platform for cohort and population studies.
This randomized clinical trial studies the Family Caregiver Palliative Care Intervention in supporting caregivers of patients with stage II-IV gastrointestinal, gynecologic, urologic and lung cancers. Education and telephone counseling may reduce stress and improve the well-being and quality of life of caregivers of cancer patients.
Background: - Urothelial cancer (tumors of the bladder, urethra, ureter, or renal pelvis) often responds initially to standard chemotherapy treatments, but frequently recurs and can often spread to other parts of the body. TRC105, an experimental drug that blocks the development of the new blood vessels needed for tumor growth, may be able to shrink or stabilize urothelial cancer tumors. TRC105 has been given previously to individuals with other types of cancer, and researchers are interested in determining its safety and effectiveness in treating urothelial cancer. Objectives: - To determine the safety and effectiveness of TRC105 as a treatment for metastatic urothelial cancer that has not responded to standard treatments. Eligibility: - Individuals at least 18 years of age who have been diagnosed with urothelial cancer that has spread to other parts of the body and has not responded to standard chemotherapy. Design: * Participants will be screened with a physical examination, medical history, blood tests, and tumor imaging studies. * Participants will receive TRC105 intravenously once every 2 weeks on days 1 and 15 of a 28-day treatment cycle. The first dose of TRC105 will be given over a 4-hour period; participants who do not have side effects may receive the next dose over 2 hours. If the second dose is tolerated, subsequent doses can be given over at least 1 hour. * To help prevent known side effects of TRC105, participants will take two doses (one in the morning and one in the evening) of the steroid dexamethasone on the day before each infusion is scheduled. Participants may have additional dexamethasone 30 minutes before infusion, and may have the infusion slowed or stopped to adjust for side effects. * Participants will be monitored with blood samples, physical examinations, and tumor imaging studies through the cycles of treatment. * Participants will continue to take TRC105 for as long as the treatment is effective against the cancer and as long as the side effects are not severe enough to stop treatment.
This is a Phase Ib/II, open-label, multi-center, competitive enrollment and dose-escalation study of ALT-801 in a biochemotherapy regimen either containing cisplatin and gemcitabine or containing gemcitabine alone in patients who have muscle invasive or metastatic urothelial cancer of bladder, renal pelvis, ureters and urethra. The purpose of this study is to evaluate the safety, determine the maximum tolerated dose (MTD) and the recommended dose (RD), and assess the anti-tumor response of ALT-801 in combination with cisplatin and gemcitabine or ALT-801 in combination with gemcitabine alone. The pharmacokinetic profile of ALT-801 in combination with cisplatin and gemcitabine will also be assessed. The study includes a dose escalation phase (Phase Ib) and a dose expansion phase (Phase II). Phase II has two treatment groups, Expansion Group 1 and Expansion Group 2. Expansion Group 2 is for platinum-refractory patients, consisting of two treatment arms based on the patient's renal function. Patients will enroll to Expansion Group 2 after stage 1 of the Group 1 expansion is complete.
The purpose of this study is to test the safety of gemcitabine and cisplatin plus Everolimus (also called RAD001) at different dose levels. We want to find out what effects, good and/or bad, this treatment has on you and your cancer. Gemcitabine and cisplatin are standard chemotherapy drugs that are commonly used to treat advanced urothelial cancer. Everolimus is a pill that works by shutting down some of the pathways in cancer cells that make tumors grow. Laboratory studies have shown that Everolimus appears to improve the activity of cisplatin against cancer cells.
This study is being done to create a registry to help us learn more about urinary and other cancers. This will let us look at large groups of people who do and do not have this kind of cancer. The investigators will look at risk factors to learn more about how these impact cancer. The investigators will also look at genetic markers. These are genes that are found in a known place. They are often associated with a particular trait. If the gene changes in some way, it may predict cancer or response to treatment. The investigators will look for markers in your saliva. This registry will help us develop better methods of: Preventing these cancers. Diagnosing these cancers. Treating these cancers.
This phase II trial studies how well erlotinib hydrochloride works in Treating participants with muscle invasive urothelial cancer or urothelial cancer that has come back. Drugs used in chemotherapy, such as erlotinib hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
The purpose of this Phase II study is to determine if AZD4877, an experimental drug that is a novel anti-mitotic agent (Eg5 or Kinesin Spindle Protein inhibitor that interferes with tumor cell division leading to tumor growth), can reduce tumor sizes in patients with bladder cancer
The purpose of this clinical research study is to learn if vinflunine can shrink or slow the growth of the cancer or increase survival in patients with transitional cell carcinoma of the urothelium. The safety of this treatment will also be studied.
Bortezomib may stop the growth of tumor cells by blocking the enzymes necessary for tumor cell growth. This phase II trial is studying how well bortezomib works in treating patients with advanced transitional cell carcinoma of the urothelium.
Phase II trial to study the effectiveness of arsenic trioxide in treating patients who have recurrent cancer of the bladder or urinary tract. Arsenic trioxide may kill tumor cells that have become resistant to standard chemotherapy regimens.