12 Clinical Trials for Various Conditions
The researchers will examine functional neural correlates that differentiate between laryngeal dystonia and voice tremor and contribute to disorder-specific pathophysiology using a cross-disciplinary approach of multimodal brain imaging.
The researchers will systematically evaluate current and novel clinical voice assessment tools and measures to elucidate distinct clinical phenotypes of those with laryngeal dystonia and voice tremor.
The goals of this project are 1) to determine the incidence of neurological voice disorders in patients with dystonia and essential tremor undergoing deep brain stimulation (DBS), 2) investigate the neuroimaging and intracranial neurophysiology correlates of voice dysfunction in these subjects, and subsequently 3) determine the effects of DBS on voice function.
Using a comprehensive approach of clinico-behavioral testing, neuroimaging and pharmacogenetics, the researchers will examine the clinical effects of sodium oxybate and the matched placebo on voice symptoms in spasmodic dysphonia and voice tremor.
Botulinum toxin is the common treatment of choice for patients with Essential Voice Tremor (EVT), but results are not universally beneficial to all patients. Inconsistent results are noted in the literature and are consistent with the PI's clinical experience. Injection augmentation, a well-established treatment for glottic insufficiency, which is a prominent factor in the clinical presentation of Essential Voice Tremor (EVT), has not been studied. By treating patients at separate times with botulinum toxin and injection augmentation in an unblinded prospective crossover treatment study, we can assess functional outcomes of these two treatments with the population of patients with Essential Voice Tremor (EVT).
The proposed research aims to determine brain abnormalities in patients with spasmodic dysphonia (SD) and voice tremor (VT) as the basis for characterization of central mechanisms underlying symptom improvement following the use of sodium oxybate, a novel oral medication for the treatment of ethanol-responsive dystonia. The proposed research is relevant to public health because the elucidation of disorder-specific mechanistic aspects of brain organization in SD vs. SD/VT is ultimately expected to lead to establishment of enhanced criteria for clinical management of these disorders, including differential diagnosis and treatment. Thus, the proposed research is relevant to the part of NIH's mission that pertains to developing fundamental knowledge that will help to reduce the burdens of human disability.
Essential voice tremor is a neurological condition that produces a regular, shaking quality in the voice. One form of drug treatment that produces some improvement in tremor of the hands is octanoic acid, which is a food additive that is similar to alcohol. Research suggests that octanoic acid may reduce tremor in the hands/arms with few side effects and no intoxication effects. This study will determine whether octanoic acid may be useful for reducing tremor when it affects the voice. Researchers are hypothesizing that octanoic acid will reduce the effects of tremor on the voice.
The contribution of genetic risk factors to the development of focal dystonias is evident. However, understanding of how variations in the causative gene expression lead to variations in brain abnormalities in different phenotypes of dystonia (e.g., familial, sporadic) remains limited. The research program of the investigators is set to determine the relationship between brain changes and genetic risk factors in laryngeal dystonia (or spasmodic dysphonia). The researchers use a novel approach of combined imaging genetics, next-generation DNA sequencing, and clinical-behavioral testing. The use of a cross-disciplinary approach as a tool for the discovery of the mediating neural mechanisms that bridge the gap from DNA sequence to the pathophysiology of dystonia holds a promise for the understanding of the mechanistic aspects of brain function affected by risk gene variants, which can be used reliably for the discovery of associated genes and neural integrity markers for this disorder. The expected outcome of this study may lead to better clinical management of this disorder, including its improved detection, accurate diagnosis, and assessment of the risk of developing dystonia in family members.
Essential tremor is the most common adult-onset movement disorder, and essential voice tremor is the vocal manifestation of essential tremor. While nearly all essential tremor patients experience hand tremor, many also manifest head tremor and voice tremor. Essential voice tremor can lead to increased vocal effort, decreased intelligibility, and misconstrued emotional state. Only one medication, propranolol, is FDA-approved to treat essential tremor. Propranolol is not felt to be nearly as effective for axial tremors (head, trunk, neck) as it is for extremity tremors. However, this has not been studied with any objective assessment in a prospective way for EVT. For patients with essential voice tremor, the limited published data suggests that botulinum toxin has been shown to lead to functional voice improvement. Botulinum toxin, though also not well-studied with objective voice outcomes, is a commonly used clinical therapy for treatment of essential voice tremor. While it is used more often for essential voice tremor than propranolol therapy, botulinum toxin also has not been prospectively studied with validated, objective voice outcome measures. The investigators would like to determine if propranolol has any significant effect on vocal tremor. The investigators would also like to determine, in an objective way, the effect of botulinum toxin on vocal tremor. If effective, propranolol would provide an affordable and non-invasive alternative or addition to botulinum toxin injections for patients with essential voice tremor.
Background: Researchers have some data on how the brain controls movement and why some people have tremor. But the causes of tremor are not fully known. Researchers want to study people with tremor to learn about changes in the brain and possible causes of tremor. Objective: To better understand how the brain controls movement, learn more about tremor, and train movement disorder specialists. Eligibility: People ages 18 and older with a diagnosed tremor syndrome Healthy volunteers ages 18 and older Design: Participants will be screened with: * Medical history * Physical exam * Urine tests * Clinical rating scales * Health questions * They may have electromyography (EMG) or accelerometry. Sensors or electrodes taped to the skin measure movement. Participation lasts up to 1 year. Some participants will have a visit to examine their tremor more. They may have rating scales, EMG, and drawing and writing tests. Participants will be in 1 or more substudies. These will require up to 7 visits. Visits could include the following: * EMG with accelerometry * Small electrodes taped on the body give small electric shocks that stimulate nerves. * MRI: Participants lie on a table that slides into a cylinder that takes pictures of the body while they do simple tasks. * Small electrodes on the scalp record brain waves. * A cone with detectors on the head measures brain activity while participants do tasks. * A wire coil held on the scalp gives an electrical current that affects brain activity. * Tests for thinking, memory, smell, hearing, or vision * Electrodes on the head give a weak electrical current that affects brain activity. * Photographs or videos of movement Participant data may be shared with other researchers.
This study will examine how dextromethorphan, a drug that alters reflexes of the larynx (voice box), might change voice symptoms in people with voice disorders due to uncontrolled laryngeal muscle spasms. These include abductor spasmodic dysphonia (breathy voice breaks), adductor spasmodic dysphonia (vowel breaks), muscular tension dysphonia (tight strained voice), and vocal tremor (tremulous voice). Dextromethorphan-one of a group of drugs called NMDA antagonists-has been used for years in over-the-counter cough suppressant medicines. In animal studies, the drug has blocked one of the reflexes in the larynx that may be associated with spasms in the laryngeal muscles. This study will compare the effects of dextromethorphan, lorazepam (a valium-type drug), and a placebo (inactive substance) in patients with the four types of voice disorders described above. Patients with spasmodic dysphonia, muscular tension dysphonia and vocal tremor may be eligible for this study. Individuals who smoke or use tobacco, who have vocal nodules or polyps, or who have a history of airway obstruction may not participate. Candidates will be screened with a medical history and physical examination, a questionnaire, voice recording (repeating sentences into a microphone), and nasolaryngoscopy (examination of the larynx with a tube advanced through the nose). For the nasolaryngoscopy, the inside of the nose is sprayed with a decongestant (to open the nasal passages) and possibly a local anesthetic. A small, flexible tube called a nasolaryngoscope is passed through the nose to look at the larynx during speech and other tasks, such as singing, whistling and prolonged vowels. Participants will be admitted to the NIH Clinical Center for each of three visits, which will last from the afternoon of one day to late afternoon of the following day. At each visit, patients will complete a questionnaire, baseline speech recording, and a test for sedation level. They will take three pills-either dextromethorphan, lorazepam, or placebo-one every 6 hours. Vital signs will be checked every 6 hours and the level of sedation during waking hours will be monitored. One to three hours after taking the third pill, speech recording, questionnaire and test of sedation will be repeated to check for possible voice changes. Patients will be given a different pill at each visit. ...
Some voice disorders are caused by uncontrolled muscle actions that affect the larynx or voice box. The purpose of this study is to understand 1) how the brain controls voice production; 2) how changes in sensation within the voice box affect brain control of the voice box; 3) how the central nervous system is affected when people have motor or sensory abnormalities that affect the voice box; and 4) whether patients with voice disorders differ from people without voice disorders in the way the brain controls the voice box. By better understanding these concepts, researchers hope to develop improved treatments for patients with voice disorders. Forty-five healthy adult volunteers and 90 patients with voice disorders will participate in this study. Participants must be between the ages of 20 and 70. The study will involve two visits to the Clinical Center. During the first visit, participants will undergo a medical history and physical exam. During the second visit, investigators will perform the following procedures on study participants: 1) look at the voice box with a nasolaryngoscope, a fine tube through the nose; 2) use MRI \[magnetic resonance imaging\] to record brain activity while participants use their voice to speak; 3) changing sensation in the voice box by dripping a topical anesthetic onto the vocal folds; and 4) using MRI to again record brain activity during speech immediately after applying the topical anesthetic. Participants will receive up to $700 in compensation for their involvement in this study.