Treatment Trials

92 Clinical Trials for Various Conditions

Focus your search

COMPLETED
Vaccine Therapy With or Without Cryosurgery in Treating Patients With Residual, Relapsed, or Refractory B-Cell Non-Hodgkin Lymphoma
Description

RATIONALE: Vaccines, such as dendritic cell therapy (DC) made from a person's tumor cells and white blood cells may help the body build an effective immune response to kill tumor cells. Cryosurgery kills cancer cells by freezing them. Giving vaccine therapy together with cryosurgery may kill more tumor cells. PURPOSE: This clinical trial studies giving vaccine therapy together with or without cryosurgery in treating patients with B-cell Non-Hodgkin's lymphoma.

COMPLETED
Cyclophosphamide for Prevention of Graft-Versus-Host Disease After Allogeneic Peripheral Blood Stem Cell Transplantation in Patients With Hematological Malignancies
Description

This phase II trial studies how well cyclophosphamide works in preventing chronic graft-versus-host disease after allogeneic peripheral blood stem cell transplant in patients with hematological malignancies. Giving chemotherapy and total-body irradiation before transplantation helps stop the growth of cancer cells and prevents the patient's immune system from rejecting the donor's stem cells. Healthy stem cells from a donor that are infused into the patient help the patient's bone marrow make blood cells; red blood cells, white blood cells, and platelets. Sometimes, however, the transplanted donor cells can cause an immune response against the body's normal cells, which is called graft-versus-host disease (GVHD). Giving cyclophosphamide after transplant may prevent this from happening or may make chronic GVHD less severe.

Conditions
Accelerated Phase Chronic Myelogenous LeukemiaAdult Acute Lymphoblastic Leukemia in RemissionAdult Acute Megakaryoblastic Leukemia (M7)Adult Acute Myeloid Leukemia in RemissionAdult Erythroleukemia (M6a)Adult Nasal Type Extranodal NK/T-cell LymphomaAdult Pure Erythroid Leukemia (M6b)Anaplastic Large Cell LymphomaAngioimmunoblastic T-cell LymphomaBlastic Phase Chronic Myelogenous LeukemiaChildhood Acute Erythroleukemia (M6)Childhood Acute Lymphoblastic Leukemia in RemissionChildhood Acute Megakaryocytic Leukemia (M7)Childhood Acute Myeloid Leukemia in RemissionChildhood Burkitt LymphomaChildhood Chronic Myelogenous LeukemiaChildhood Diffuse Large Cell LymphomaChildhood Immunoblastic Large Cell LymphomaChildhood Myelodysplastic SyndromesChildhood Nasal Type Extranodal NK/T-cell LymphomaChronic Myelomonocytic LeukemiaChronic Phase Chronic Myelogenous LeukemiaCutaneous B-cell Non-Hodgkin Lymphomade Novo Myelodysplastic SyndromesExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueHepatosplenic T-cell LymphomaIntraocular LymphomaNodal Marginal Zone B-cell LymphomaNoncutaneous Extranodal LymphomaPeripheral T-cell LymphomaPhiladelphia Chromosome Negative Chronic Myelogenous LeukemiaPost-transplant Lymphoproliferative DisorderPreviously Treated Myelodysplastic SyndromesRecurrent Adult Acute Lymphoblastic LeukemiaRecurrent Adult Acute Myeloid LeukemiaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Grade III Lymphomatoid GranulomatosisRecurrent Adult Hodgkin LymphomaRecurrent Adult Immunoblastic Large Cell LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Adult T-cell Leukemia/LymphomaRecurrent Childhood Acute Lymphoblastic LeukemiaRecurrent Childhood Acute Myeloid LeukemiaRecurrent Childhood Anaplastic Large Cell LymphomaRecurrent Childhood Grade III Lymphomatoid GranulomatosisRecurrent Childhood Large Cell LymphomaRecurrent Childhood Lymphoblastic LymphomaRecurrent Childhood Small Noncleaved Cell LymphomaRecurrent Cutaneous T-cell Non-Hodgkin LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Mycosis Fungoides/Sezary SyndromeRecurrent Small Lymphocytic LymphomaRecurrent/Refractory Childhood Hodgkin LymphomaRelapsing Chronic Myelogenous LeukemiaSecondary Acute Myeloid LeukemiaSecondary Myelodysplastic SyndromesSmall Intestine LymphomaSplenic Marginal Zone LymphomaStage III Multiple MyelomaTesticular LymphomaWaldenström Macroglobulinemia
TERMINATED
Sirolimus, Tacrolimus, Thymoglobulin and Rituximab as Graft-versus-Host-Disease Prophylaxis in Patients Undergoing Haploidentical and HLA Partially Matched Donor Hematopoietic Cell Transplantation
Description

This Phase II clinical trial was designed for patients with hematologic malignancies in need of donor peripheral blood stem cell transplant, and have no HLA matched donor. Therefore It will test the efficacy of combining sirolimus, tacrolimus, antithymocyte globulin, and rituximab in preventing graft versus host disease in transplants from HLA Haploidentical and partially mismatched donors.

TERMINATED
Donor Umbilical Cord Blood Transplant in Treating Patients With Advanced Hematological Cancer or Other Disease
Description

RATIONALE: Giving low doses of chemotherapy and total-body irradiation before a donor umbilical cord blood transplant helps stop the growth of cancer or abnormal cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil before and after transplant may stop this from happening. PURPOSE: This phase II trial is studying how well donor umbilical cord blood transplant with reduced intensity conditioning works in treating patients with advanced hematological cancer or other disease.

COMPLETED
Rasburicase in Preventing Graft-Versus-Host Disease in Patients With Hematologic Cancer or Other Disease Undergoing Donor Stem Cell Transplant
Description

RATIONALE: Rasburicase may be an effective treatment for graft-versus-host disease caused by a donor stem cell transplant. PURPOSE: This clinical trial is studying how well rasburicase works in preventing graft-versus-host disease in patients with hematologic cancer or other disease undergoing donor stem cell transplant.

COMPLETED
Sibling Donor Peripheral Stem Cell Transplant or Sibling Donor Bone Marrow Transplant in Treating Patients With Hematologic Cancers or Other Diseases
Description

RATIONALE: Giving chemotherapy before a donor peripheral stem cell transplant or bone marrow transplant using stem cells from a brother or sister that closely match the patient's stem cells, helps stop the growth of cancer or abnormal cells. It also helps stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer or abnormal cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving colony-stimulating factors, such as G-CSF, to the donor helps the stem cells move from the bone marrow to the blood so they can be collected and stored. Giving methotrexate and cyclosporine before and after transplant may stop this from happening. It is not yet known whether a donor peripheral stem cell transplant is more effective than a donor bone marrow transplant in treating hematologic cancers or other diseases. PURPOSE: This randomized phase III trial is studying filgrastim-mobilized sibling donor peripheral stem cell transplant to see how well it works compared with sibling donor bone marrow transplant in treating patients with hematologic cancers or other diseases.

NO_LONGER_AVAILABLE
Umbilical Cord Blood Stem Cell Transplant in Treating Patients With Hematologic Cancer or Other Disease
Description

RATIONALE: Giving low doses of chemotherapy and total-body irradiation before a donor umbilical cord blood stem cell transplant helps stop the growth of cancer or abnormal cells. It also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer or abnormal cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus and mycophenolate mofetil before the transplant may stop this from happening. PURPOSE: This clinical trial is studying how well umbilical cord blood stem cell transplant works in treating patients with hematologic cancer or other disease.

COMPLETED
Music in Reducing Anxiety and Pain in Adult Patients Undergoing Bone Marrow Biopsy for Hematologic Cancers or Other Diseases
Description

RATIONALE: Listening to relaxing music during a bone marrow biopsy may be effective in reducing anxiety and pain. PURPOSE: This randomized clinical trial is studying how well music works in reducing anxiety and pain in adult patients undergoing bone marrow biopsy for hematologic cancers or other diseases.

TERMINATED
Irradiated Donor Lymphocytes and Rituximab in Treating Patients With Relapsed or Refractory Lymphoproliferative Disease
Description

RATIONALE: When irradiated lymphocytes from a donor are infused into the patient they may help the patient's immune system kill cancer cells. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Giving irradiated donor lymphocytes together with rituximab may kill more cancer cells. PURPOSE: This clinical trial is studying the side effects and how well giving irradiated donor lymphocytes together with rituximab works in treating patients with relapsed or refractory lymphoproliferative disease.

COMPLETED
Alvocidib, Fludarabine Phosphate, and Rituximab in Treating Patients With Lymphoproliferative Disorders or Mantle Cell Lymphoma
Description

This phase I trial studies the side effects, best way to give, and the best dose of alvocidib when given together with fludarabine phosphate and rituximab in treating patients with previously untreated or relapsed lymphoproliferative disorders or mantle cell lymphoma. Monoclonal antibodies such as rituximab can locate cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells. Drugs used in chemotherapy such as alvocidib and fludarabine use different ways to stop cancer cells from dividing so they stop growing or die. Combining monoclonal antibody therapy with chemotherapy may kill more cancer cells.

Conditions
B-cell Chronic Lymphocytic LeukemiaContiguous Stage II Grade 1 Follicular LymphomaContiguous Stage II Grade 2 Follicular LymphomaContiguous Stage II Mantle Cell LymphomaContiguous Stage II Marginal Zone LymphomaContiguous Stage II Small Lymphocytic LymphomaExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueNodal Marginal Zone B-cell LymphomaNoncontiguous Stage II Grade 1 Follicular LymphomaNoncontiguous Stage II Grade 2 Follicular LymphomaNoncontiguous Stage II Mantle Cell LymphomaNoncontiguous Stage II Marginal Zone LymphomaNoncontiguous Stage II Small Lymphocytic LymphomaProgressive Hairy Cell Leukemia, Initial TreatmentRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Small Lymphocytic LymphomaRefractory Chronic Lymphocytic LeukemiaRefractory Hairy Cell LeukemiaSplenic Marginal Zone LymphomaStage I Chronic Lymphocytic LeukemiaStage I Grade 1 Follicular LymphomaStage I Grade 2 Follicular LymphomaStage I Mantle Cell LymphomaStage I Marginal Zone LymphomaStage I Small Lymphocytic LymphomaStage II Chronic Lymphocytic LeukemiaStage III Chronic Lymphocytic LeukemiaStage III Grade 1 Follicular LymphomaStage III Grade 2 Follicular LymphomaStage III Mantle Cell LymphomaStage III Marginal Zone LymphomaStage III Small Lymphocytic LymphomaStage IV Chronic Lymphocytic LeukemiaStage IV Grade 1 Follicular LymphomaStage IV Grade 2 Follicular LymphomaStage IV Mantle Cell LymphomaStage IV Marginal Zone LymphomaStage IV Small Lymphocytic LymphomaUntreated Hairy Cell LeukemiaWaldenström Macroglobulinemia
COMPLETED
NMA Allogeneic Hematopoietic Cell Transplant in Hematologic Cancer/Disorders
Description

RATIONALE: Giving low doses of chemotherapy before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune system and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor's T cells (donor lymphocyte infusion) after the transplant may help increase this effect. Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving immunosuppressive therapy before or after the transplant may stop this from happening. PURPOSE: This phase II trial is studying how well chemotherapy followed by donor peripheral stem cell transplant works in treating patients with hematologic cancer or aplastic anemia.

COMPLETED
Ixabepilone in Treating Patients With Relapsed or Refractory Lymphoproliferative Disorders
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. PURPOSE: Phase II trial to study the effectiveness of ixabepilone in treating patients who have relapsed or refractory lymphoproliferative disorders.

COMPLETED
Prevention of Graft-Versus-Host Disease in Patients Undergoing Bone Marrow Transplantation
Description

RATIONALE: Bone marrow transplantation may be able to replace immune cells that were destroyed by chemotherapy or radiation therapy used to kill tumor cells. Sometimes the transplanted cells can make an immune response against the body's normal tissues. Stem cells that have been treated in the laboratory to remove lymphocytes may prevent this from happening. PURPOSE: Clinical trial to prevent graft-versus-host disease in patients undergoing bone marrow transplantation.

Conditions
COMPLETED
Combination Chemotherapy With or Without Amifostine in Treating Patients With Recurrent or Refractory Non-Hodgkin's Lymphoma or Hodgkin's Disease Undergoing Stem Cell Transplantation
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Chemoprotective drugs such as amifostine may protect normal cells from the side effects of chemotherapy. PURPOSE: Randomized phase II trial to study the effectiveness of combination chemotherapy with or without amifostine in treating patients with recurrent or refractory non-Hodgkin's lymphoma or Hodgkin's disease who are undergoing autologous stem cell transplantation.

Conditions
COMPLETED
Salvia Hispanica Seed in Reducing Risk of Disease Recurrence in Patients With Non-Hodgkin Lymphoma
Description

This pilot clinical trial studies Salvia hispanica seed in reducing the risk of returning disease (recurrence) in patients with non-Hodgkin lymphoma. Functional foods, such as Salvia hispanica seed, has health benefits beyond basic nutrition by reducing disease risk and promoting optimal health. Salvia hispanica seed contains essential poly-unsaturated fatty acids, including omega 3 alpha linoleic acid and omega 6 linoleic acid; it also contains high levels of antioxidants and dietary soluble fiber. Salvia hispanica seed may raise omega-3 levels in the blood and/or change the bacterial populations that live in the digestive system and reduce the risk of disease recurrence in patients with non-Hodgkin lymphoma.

RECRUITING
Registry of Older Patients With Cancer
Description

RATIONALE: Gathering information about older patients with cancer may help the study of cancer in the future. PURPOSE: This research study is gathering information from older patients with cancer into a registry.

RECRUITING
Tissue, Blood, and Body Fluid Sample Collection From Patients With Hematologic Cancer
Description

RATIONALE: Collecting and storing samples of tissue, blood, and body fluid from patients with cancer to study in the laboratory may help the study of cancer in the future. PURPOSE: This research study is collecting and storing blood and tissue samples from patients being evaluated for hematologic cancer.

COMPLETED
Methemoglobinemia in Young Patients With Hematologic Cancer or Aplastic Anemia Treated With Dapsone
Description

RATIONALE: Gathering information about how often methemoglobinemia occurs in young patients receiving dapsone for hematologic cancer or aplastic anemia may help doctors learn more about the disease and plan the best treatment. PURPOSE: This research study is looking at methemoglobinemia in young patients with hematologic cancer or aplastic anemia treated with dapsone.

TERMINATED
Umbilical Cord Blood (UCB) Transplant, Fludarabine, Melphalan, and Anti-thymocyte Globulin (ATG) in Treating Patients With Hematologic Cancer
Description

RATIONALE: Giving low doses of chemotherapy before a donor umbilical cord blood transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus and mycophenolate mofetil after the transplant may stop this from happening. PURPOSE: This phase II trial is studying how well giving umbilical cord blood transplant together with fludarabine, melphalan, and antithymocyte globulin works in treating patients with hematologic cancer.

TERMINATED
Total Marrow and Total Lymph Node Irradiation, Fludarabine, and Melphalan Followed By Donor Stem Cell Transplant in Treating Patients With Advanced Hematological Cancer That Has Not Responded to Treatment
Description

RATIONALE: Giving total marrow and total lymph node irradiation together with low doses of chemotherapy before a donor stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). PURPOSE: This phase I trial is studying the side effects and best dose of total marrow and total lymph node irradiation when given together with fludarabine and melphalan followed by donor stem cell transplant in treating patients with advanced hematological cancer that has not responded to treatment.

COMPLETED
A Phase II Study of Allo-HCT for B-Cell NHL Using Zevalin, Fludarabine and Melphalan
Description

RATIONALE: Giving monoclonal antibody therapy, radioimmunotherapy, and chemotherapy before a donor stem cell transplant helps stop the growth of cancer cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the stem cells from a related donor that do not exactly match the patient's blood, are infused into the patient, they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus and sirolimus before and after transplant may stop this from happening. PURPOSE: This phase II trial is studying the side effects and how well giving indium In 111 ibritumomab tiuxetan and yttrium y 90 ibritumomab tiuxetan together with rituximab, fludarabine, melphalan, and donor stem cell transplant works in treating patients with B-cell non-Hodgkin lymphoma.

COMPLETED
Allogeneic Hematopoietic Cell Transplantation for Patients With Busulfex-based Regimen
Description

RATIONALE: Giving chemotherapy, such as fludarabine and busulfan, before a donor peripheral stem cell transplant helps stop the growth of cancer or abnormal cells. It also helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving a monoclonal antibody, alemtuzumab, before the transplant and tacrolimus after the transplant may stop this from happening. PURPOSE: The phase I portion of this trial identified the maximum tolerated dose of busulfan after treating 40 patients on a dose-escalation scheme. We are now treating an additional 26 patients on the phase II portion of the trial at a Pharmacokinetic (PK)-directed dose of total area under curve (AUC) 6912 micrometer (uM)-min/24 hours. We transitioned to the Phase II portion of the study in October 2009.

COMPLETED
Donor Stem Cell Transplant in Treating Older or Frail Patients With Hematologic Cancer
Description

RATIONALE: Giving low doses of chemotherapy, such as fludarabine and busulfan, before a donor bone marrow or peripheral blood stem cell transplant helps stop the growth of cancer cells. It also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune system and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor's T cells (donor lymphocyte infusion) after the transplant may help increase this effect. Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving antithymocyte globulin before transplant and methotrexate and tacrolimus after the transplant may stop this from happening. PURPOSE: This phase I trial is studying the side effects of donor stem cell transplant in treating older or frail patients with hematologic cancer.

COMPLETED
Fenretinide in Treating Patients With Refractory or Relapsed Hematologic Cancer
Description

RATIONALE: Drugs used in chemotherapy, such as fenretinide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving fenretinide in a different way may kill more cancer cells. PURPOSE: This phase I trial is studying the side effects and best dose of intravenous fenretinide in treating patients with refractory or relapsed hematologic cancer.

COMPLETED
Pyroxamide in Treating Patients With Advanced Cancer
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: Phase I trial to study the effectiveness of pyroxamide in treating patients who have advanced cancer.

COMPLETED
Non-Ablative Allo HSCT For Hematologic Malignancies or SAA
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Peripheral stem cell transplantation may be able to replace immune cells that were destroyed by chemotherapy used to kill cancer cells. PURPOSE: Phase II trial to study the effectiveness of combination chemotherapy followed by peripheral stem cell transplantation in treating patients who have hematologic cancer or aplastic anemia.

COMPLETED
Ondansetron in Treating Patients With Advanced Cancer and Chronic Nausea and Vomiting Not Caused by Cancer Treatment
Description

RATIONALE: Antiemetic drugs, such as ondansetron, may help to reduce or prevent nausea and vomiting in patients with advanced cancer. PURPOSE: This randomized phase III trial is studying how well ondansetron works compared to a placebo in treating patients with advanced cancer and chronic nausea and vomiting that is not caused by cancer therapy.

COMPLETED
St. John's Wort in Relieving Fatigue in Patients Undergoing Chemotherapy or Hormone Therapy for Cancer
Description

RATIONALE: Giving St. John's wort may be effective in relieving fatigue in patients with cancer who are undergoing chemotherapy or hormone therapy. PURPOSE: Randomized phase III trial to determine the effectiveness of St. John's wort in relieving fatigue in patients who are undergoing chemotherapy or hormone therapy for cancer.

COMPLETED
Bone Marrow Transplantation in Treating Patients With Hematologic Cancer
Description

RATIONALE: Radiation therapy uses high-energy x-rays to damage cancer cells. Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Combining chemotherapy with bone marrow transplantation may allow the doctor to give higher doses of chemotherapy drugs and kill more tumor cells. PURPOSE: Phase II trial to study the effectiveness of bone marrow transplantation in treating patients who have hematologic cancer.