NETs: Protection or Harm in Neonatal Inflammation or Infection

Description

This is a prospective in vitro cell biology study of polymorphonuclear leukocyte (PMN) protein synthesis in response to PAF. PMNs from cord blood of premature human infants at risk for NEC (birth weight between 501 - 1500 grams) and PMNs from cord blood of healthy term infants will be isolated and stimulated with PAF, a biologically active phospholipid implicated in the pathogenesis of NEC. NEC, a disease of prematurity with an incidence of 10.1% of infants born weighing between 501 - 1500 grams, is associated with significant morbidity and mortality. We will compare the protein synthesis of inflammatory modulators, including Interleukin 6 Receptor alpha (IL-6R alpha) and Retinoic Acid Receptor alpha (RAR alpha) proteins to protein synthesis responses already observed in PMNs isolated from healthy adults. Furthermore, we will characterize the expression and activity of the mammalian target of rapamycin (mTOR) translational protein synthesis control pathway in PMNs isolated from preterm and term infants and compare those results with previous observations in PMNs isolated from adults. This pathway is known to regulate IL-6R alpha and RAR alpha protein expression in PMNs isolated from adults. We will also follow those premature infants at risk for NEC clinically to determine which infants develop NEC and what risk factors may be associated with NEC in this population.

Conditions

Necrotizing Enterocolitis (NEC)

Study Overview

Study Details

Study overview

This is a prospective in vitro cell biology study of polymorphonuclear leukocyte (PMN) protein synthesis in response to PAF. PMNs from cord blood of premature human infants at risk for NEC (birth weight between 501 - 1500 grams) and PMNs from cord blood of healthy term infants will be isolated and stimulated with PAF, a biologically active phospholipid implicated in the pathogenesis of NEC. NEC, a disease of prematurity with an incidence of 10.1% of infants born weighing between 501 - 1500 grams, is associated with significant morbidity and mortality. We will compare the protein synthesis of inflammatory modulators, including Interleukin 6 Receptor alpha (IL-6R alpha) and Retinoic Acid Receptor alpha (RAR alpha) proteins to protein synthesis responses already observed in PMNs isolated from healthy adults. Furthermore, we will characterize the expression and activity of the mammalian target of rapamycin (mTOR) translational protein synthesis control pathway in PMNs isolated from preterm and term infants and compare those results with previous observations in PMNs isolated from adults. This pathway is known to regulate IL-6R alpha and RAR alpha protein expression in PMNs isolated from adults. We will also follow those premature infants at risk for NEC clinically to determine which infants develop NEC and what risk factors may be associated with NEC in this population.

NETs: Protection or Harm in Neonatal Inflammation or Infection

NETs: Protection or Harm in Neonatal Inflammation or Infection

Condition
Necrotizing Enterocolitis (NEC)
Intervention / Treatment

-

Contacts and Locations

Salt Lake City

University of Utah, Salt Lake City, Utah, United States, 84112

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

For general information about clinical research, read Learn About Studies.

Eligibility Criteria

  • * Patients hospitalized in the NICU who were less than or equal to 1500 grams or less than 30 weeks gestational age at birth; Term infants delivered at UUMC without complication, either via cesarean section or vaginal delivery; Cord blood isolated within first hour of life; and parents or guardians must have signed informed consent.
  • * Infants with major congenital anomalies will be excluded.

Ages Eligible for Study

to 1 Hour

Sexes Eligible for Study

ALL

Accepts Healthy Volunteers

Yes

Collaborators and Investigators

University of Utah,

Christian C Yost, M.D., PRINCIPAL_INVESTIGATOR, University of Utah

Study Record Dates

2025-04-30