Investigation of the Genetics of Hematologic Diseases

Description

The purpose of this study is to collect and store samples and health information for current and future research to learn more about the causes and treatment of blood diseases. This is not a therapeutic or diagnostic protocol for clinical purposes. Blood, bone marrow, hair follicles, nail clippings, urine, saliva and buccal swabs, left over tissue, as well as health information will be used to study and learn about blood diseases by using genetic and/or genomic research. In general, genetic research studies specific genes of an individual; genomic research studies the complete genetic makeup of an individual. It is not known why many people have blood diseases, because not all genes causing these diseases have been found. It is also not known why some people with the same disease are sicker than others, but this may be related to their genes. By studying the genomes in individuals with blood diseases and their family members, the investigators hope to learn more about how diseases develop and respond to treatment which may provide new and better ways to diagnose and treat blood diseases. Primary Objective: * Establish a repository of DNA and cryopreserved blood cells with linked clinical information from individuals with non-malignant blood diseases and biologically-related family members, in conjunction with the existing St. Jude biorepository, to conduct genomic and functional studies to facilitate secondary objectives. Secondary Objectives: * Utilize next generation genomic sequencing technologies to Identify novel genetic alternations that associate with disease status in individuals with unexplained non-malignant blood diseases. * Use genomic approaches to identify modifier genes in individuals with defined monogenic non-malignant blood diseases. * Use genomic approaches to identify genetic variants associated with treatment outcomes and toxicities for individuals with non-malignant blood disease. * Use single cell genomics, transcriptomics, proteomics and metabolomics to investigate biomarkers for disease progression, sickle cell disease (SCD) pain events and the long-term cellular and molecular effects of hydroxyurea therapy. * Using longitudinal assessment of clinical and genetic, study the long-term outcomes and evolving genetic changes in non-malignant blood diseases. Exploratory Objectives * Determine whether analysis of select patient-derived bone marrow hematopoietic progenitor/stem (HSPC) cells or induced pluripotent stem (iPS) cells can recapitulate genotype-phenotype relationships and provide insight into disease mechanisms. * Determine whether analysis of circulating mature blood cells and their progenitors from selected patients with suspected or proven genetic hematological disorders can recapitulate genotype-phenotype relationships and provide insight into disease mechanisms.

Conditions

Bone Marrow Failure Syndromes, Erythrocyte Disorder, Leukocyte Disorder, Hemostasis, Blood Coagulation Disorder, Sickle Cell Disease, Dyskeratosis Congenita, Diamond-Blackfan Anemia, Congenital Thrombocytopenia, Severe Congenital Neutropenia, Fanconi Anemia, Myelodysplastic Syndromes, Myeloproliferative Diseases

Study Overview

Study Details

Study overview

The purpose of this study is to collect and store samples and health information for current and future research to learn more about the causes and treatment of blood diseases. This is not a therapeutic or diagnostic protocol for clinical purposes. Blood, bone marrow, hair follicles, nail clippings, urine, saliva and buccal swabs, left over tissue, as well as health information will be used to study and learn about blood diseases by using genetic and/or genomic research. In general, genetic research studies specific genes of an individual; genomic research studies the complete genetic makeup of an individual. It is not known why many people have blood diseases, because not all genes causing these diseases have been found. It is also not known why some people with the same disease are sicker than others, but this may be related to their genes. By studying the genomes in individuals with blood diseases and their family members, the investigators hope to learn more about how diseases develop and respond to treatment which may provide new and better ways to diagnose and treat blood diseases. Primary Objective: * Establish a repository of DNA and cryopreserved blood cells with linked clinical information from individuals with non-malignant blood diseases and biologically-related family members, in conjunction with the existing St. Jude biorepository, to conduct genomic and functional studies to facilitate secondary objectives. Secondary Objectives: * Utilize next generation genomic sequencing technologies to Identify novel genetic alternations that associate with disease status in individuals with unexplained non-malignant blood diseases. * Use genomic approaches to identify modifier genes in individuals with defined monogenic non-malignant blood diseases. * Use genomic approaches to identify genetic variants associated with treatment outcomes and toxicities for individuals with non-malignant blood disease. * Use single cell genomics, transcriptomics, proteomics and metabolomics to investigate biomarkers for disease progression, sickle cell disease (SCD) pain events and the long-term cellular and molecular effects of hydroxyurea therapy. * Using longitudinal assessment of clinical and genetic, study the long-term outcomes and evolving genetic changes in non-malignant blood diseases. Exploratory Objectives * Determine whether analysis of select patient-derived bone marrow hematopoietic progenitor/stem (HSPC) cells or induced pluripotent stem (iPS) cells can recapitulate genotype-phenotype relationships and provide insight into disease mechanisms. * Determine whether analysis of circulating mature blood cells and their progenitors from selected patients with suspected or proven genetic hematological disorders can recapitulate genotype-phenotype relationships and provide insight into disease mechanisms.

Investigation of the Genetics of Hematologic Diseases

Investigation of the Genetics of Hematologic Diseases

Condition
Bone Marrow Failure Syndromes
Intervention / Treatment

-

Contacts and Locations

Memphis

St. Jude Children's Research Hospital, Memphis, Tennessee, United States, 38105

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

For general information about clinical research, read Learn About Studies.

Eligibility Criteria

  • * An individual (proband) receiving therapy or expert consultation regarding a non-malignant hematologic disorder, MDS or MPN.
  • * A biologically-related individual to the identified proband to include: first, second or third degree relatives.
  • * None

Ages Eligible for Study

to

Sexes Eligible for Study

ALL

Accepts Healthy Volunteers

No

Collaborators and Investigators

St. Jude Children's Research Hospital,

Marcin Wlodarski, MD, PhD, PRINCIPAL_INVESTIGATOR, St. Jude Children's Research Hospital

Study Record Dates

2050-07