Patients eligible for this study have a type of blood cancer called T-cell leukemia or lymphoma (lymph gland cancer). The body has different ways of fighting infection and disease. This study combines two different ways of fighting disease with antibodies and T cells. Antibodies are types of proteins that protect the body from bacterial and other diseases. T cells, or T lymphocytes, are special infection-fighting blood cells that can kill other cells including tumor cells. Both antibodies and T cells have been used to treat cancer; they have shown promise, but have not been strong enough to cure most patients. T cells can kill tumor cells but there normally are not enough of them to kill all the tumor cells. Some researchers have taken T cells from a person's blood, grown more of them in the laboratory and then given them back to the person. The antibody used in this study is called anti-CD7. This antibody sticks to T-cell leukemia or lymphoma cells because of a substance on the outside of these cells called CD7. CD7 antibodies have been used to treat people with T-cell leukemia and lymphoma. For this study, anti-CD7 has been changed so that instead of floating free in the blood it is now joined to the T cells. When an antibody is joined to a T cell in this way it is called a chimeric receptor. In the laboratory, investigators have also found that T cells work better if they also add proteins that stimulate T cells, such as one called CD28. Adding the CD28 makes the cells grow better and last longer in the body, thus giving the cells a better chance of killing the leukemia or lymphoma cells. In this study, investigators attach the CD7 chimeric receptor with CD28 added to it to T cells. Investigators will then test how long the cells last. These CD7 chimeric receptor T cells with CD28 are investigational products not approved by the Food and Drug Administration.
T-cell Acute Lymphoblastic Lymphoma, T-non-Hodgkin Lymphoma, T-cell Acute Lymphoblastic Leukemia
Patients eligible for this study have a type of blood cancer called T-cell leukemia or lymphoma (lymph gland cancer). The body has different ways of fighting infection and disease. This study combines two different ways of fighting disease with antibodies and T cells. Antibodies are types of proteins that protect the body from bacterial and other diseases. T cells, or T lymphocytes, are special infection-fighting blood cells that can kill other cells including tumor cells. Both antibodies and T cells have been used to treat cancer; they have shown promise, but have not been strong enough to cure most patients. T cells can kill tumor cells but there normally are not enough of them to kill all the tumor cells. Some researchers have taken T cells from a person's blood, grown more of them in the laboratory and then given them back to the person. The antibody used in this study is called anti-CD7. This antibody sticks to T-cell leukemia or lymphoma cells because of a substance on the outside of these cells called CD7. CD7 antibodies have been used to treat people with T-cell leukemia and lymphoma. For this study, anti-CD7 has been changed so that instead of floating free in the blood it is now joined to the T cells. When an antibody is joined to a T cell in this way it is called a chimeric receptor. In the laboratory, investigators have also found that T cells work better if they also add proteins that stimulate T cells, such as one called CD28. Adding the CD28 makes the cells grow better and last longer in the body, thus giving the cells a better chance of killing the leukemia or lymphoma cells. In this study, investigators attach the CD7 chimeric receptor with CD28 added to it to T cells. Investigators will then test how long the cells last. These CD7 chimeric receptor T cells with CD28 are investigational products not approved by the Food and Drug Administration.
Cell Therapy for High Risk T-Cell Malignancies Using CD7-Specific CAR Expressed on Autologous T Cells
-
Houston Methodist Hospital, Houston, Texas, United States, 77030
Texas Children's Hospital, Houston, Texas, United States, 77030
Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.
For general information about clinical research, read Learn About Studies.
to 75 Years
ALL
No
Baylor College of Medicine,
Rayne Rouce, MD, PRINCIPAL_INVESTIGATOR, Pediatrics, Baylor College of Medicine
LaQuisa Hill, MD, PRINCIPAL_INVESTIGATOR, Baylor College of Medicine
Maksim Mamonkin, PhD, PRINCIPAL_INVESTIGATOR, Baylor College of Medicine
2040-05-01