The investigators have developed a new technology, termed in-vivo laser capture microdissection (IVLCM), that addresses the limitations of endoscopic biopsy for screening for BE and provides targeted genomic profiling of aberrant tissue for more precise prediction of EAC risk. The device is a tethered capsule endomicroscope (TCE) that implements optical coherence tomography (OCT) to grab 10-mm-resolution, cross-sectional microscopic images of the entire esophagus after the capsule is swallowed. This OCT-based TCE technology is used in unsedated patients to visualize images of BE and dysplastic BE. During the IVLCM procedure, TCE images of abnormal BE tissue are identified in real time and selectively adhered onto the device. When the capsule is removed from the patient, these tissues, targeted based on their abnormal OCT morphology, are sent for genomic analysis. By enabling the precise isolation of aberrant esophageal tissues using a swallowable capsule, this technology has the potential to solve the major problems that currently prohibit adequate BE screening and prevention of Esophageal Adenocarcinoma EAC.
Barrett Esophagus
The investigators have developed a new technology, termed in-vivo laser capture microdissection (IVLCM), that addresses the limitations of endoscopic biopsy for screening for BE and provides targeted genomic profiling of aberrant tissue for more precise prediction of EAC risk. The device is a tethered capsule endomicroscope (TCE) that implements optical coherence tomography (OCT) to grab 10-mm-resolution, cross-sectional microscopic images of the entire esophagus after the capsule is swallowed. This OCT-based TCE technology is used in unsedated patients to visualize images of BE and dysplastic BE. During the IVLCM procedure, TCE images of abnormal BE tissue are identified in real time and selectively adhered onto the device. When the capsule is removed from the patient, these tissues, targeted based on their abnormal OCT morphology, are sent for genomic analysis. By enabling the precise isolation of aberrant esophageal tissues using a swallowable capsule, this technology has the potential to solve the major problems that currently prohibit adequate BE screening and prevention of Esophageal Adenocarcinoma EAC.
Pilot Study for OCT Guided in Vivo Laser Capture Microdissection for Assessing the Prognosis of Barrett's Esophagus
-
Massachusetts General Hospital, Boston, Massachusetts, United States, 02114
Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.
For general information about clinical research, read Learn About Studies.
18 Years to
ALL
No
Massachusetts General Hospital,
Gary Tearney, MD., PhD, PRINCIPAL_INVESTIGATOR, Massachusetts General Hospital
2026-12