The proposed studies will assess 1) the mechanisms for the age-related increase in fatigability during dynamic exercise (Aims 1 and 2) and 2) the effectiveness of high-velocity resistance training coupled with blood flow restriction (BFR) in improving muscle power output and fatigability in older adults (Aim 3). The first two aims are cross-sectional studies comparing young (18-35 years old) and older adults (≥60 yrs old) to test our central hypothesis that the greater accumulation of metabolites and increase in fatigability in older adults is due to either age-related impairments in skeletal muscle bioenergetics (Aim 1) and/or vascular dysfunction (Aim 2). These two aims will integrate techniques to assess whole-muscle bioenergetics (31P-MRS) and in vivo vascular function (near infrared spectroscopy; NIRS and doppler ultrasonography) with in vitro assessment of single fiber bioenergetics (epifluorescence microscopy) and vasoreactivity of isolated skeletal muscle arterioles (video microscopy). We will then determine whether bioenergetics, vascular function and fatigability are altered in older men and women in response to 8 weeks of resistance exercise training of the lower limb both with and without blood flow restriction (Aim 3).
Aging
The proposed studies will assess 1) the mechanisms for the age-related increase in fatigability during dynamic exercise (Aims 1 and 2) and 2) the effectiveness of high-velocity resistance training coupled with blood flow restriction (BFR) in improving muscle power output and fatigability in older adults (Aim 3). The first two aims are cross-sectional studies comparing young (18-35 years old) and older adults (≥60 yrs old) to test our central hypothesis that the greater accumulation of metabolites and increase in fatigability in older adults is due to either age-related impairments in skeletal muscle bioenergetics (Aim 1) and/or vascular dysfunction (Aim 2). These two aims will integrate techniques to assess whole-muscle bioenergetics (31P-MRS) and in vivo vascular function (near infrared spectroscopy; NIRS and doppler ultrasonography) with in vitro assessment of single fiber bioenergetics (epifluorescence microscopy) and vasoreactivity of isolated skeletal muscle arterioles (video microscopy). We will then determine whether bioenergetics, vascular function and fatigability are altered in older men and women in response to 8 weeks of resistance exercise training of the lower limb both with and without blood flow restriction (Aim 3).
Fatigability of Lower Limb Muscle in Older Adults: Protective Effects of Strength Training Exercise in Old Men and Women
-
Marquette University, Milwaukee, Wisconsin, United States, 53201
Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.
For general information about clinical research, read Learn About Studies.
18 Years to 100 Years
ALL
Yes
Marquette University,
2025-08-31