This project seeks to identify the how walking impairments in stroke survivors contribute to mobility deficits through the use of behavioral observations and computational models. The chosen approach integrates biomechanical analyses, physiological assessments and machine learning algorithms to explain how asymmetries during walking influence balance and the effort required to walk. Ultimately, the results of this work may lead to more personalized rehabilitation strategies to improve walking capacity and efficiency, and ultimately reduce fall risk in stroke survivors.
Stroke
This project seeks to identify the how walking impairments in stroke survivors contribute to mobility deficits through the use of behavioral observations and computational models. The chosen approach integrates biomechanical analyses, physiological assessments and machine learning algorithms to explain how asymmetries during walking influence balance and the effort required to walk. Ultimately, the results of this work may lead to more personalized rehabilitation strategies to improve walking capacity and efficiency, and ultimately reduce fall risk in stroke survivors.
Optimization Principles in Hemiparetic Gait
-
University of Southern California, Los Angeles, California, United States, 90033
Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.
For general information about clinical research, read Learn About Studies.
21 Years to
ALL
Yes
University of Southern California,
2023-11-30