This clinical trial focuses on testing the efficacy of different digital interventions to promote re-engagement in cancer-related long-term follow-up care for adolescent and young adult (AYA) survivors of childhood cancer.
Deep Brain Stimulation of the subthalamic nucleus (STN) has become a standard of care, FDA-approved treatment for Parkinson's disease, with stimulation delivered at a constant amplitude and voltage, operating in an open-loop fashion that does not respond to a patient's current state. Although gait deficits and freezing of gait may initially respond to continuous open-loop deep brain stimulation (olDBS) and medication, the symptoms often recur over time. The episodic and predictable nature of FOG makes it well suited for adaptive DBS (aDBS) and a device that overcomes the limitations of traditional high frequency olDBS and is capable of adapting therapy either in the frequency or intensity domain transiently to treat FOG while also treating other PD signs such as tremor and bradykinesia. The purpose of this study is to determine the feasibility of an adaptive DBS system, that responds to patient-specific neural and kinematic variables with customized DBS parameters.
Bilateral Closed Loop Deep Brain Stimulation for Freezing of Gait Using Neural and Kinematic Feedback
Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.
| Inclusion Criteria | Exclusion Criteria |
|---|---|
|
|
Sponsor: Stanford University
These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.