This clinical trial focuses on testing the efficacy of different digital interventions to promote re-engagement in cancer-related long-term follow-up care for adolescent and young adult (AYA) survivors of childhood cancer.
The investigators have developed a novel robot-guided stretching under intelligent control and combine it with active movement training, which helped increase joint ROM, reduce spasticity and joint stiffness, increase muscle force output, and improve locomotion. However, for stroke survivors with sensorimotor impairment, their peripheral muscle may not sufficiently be recruited. Functional electrical stimulation (FES), has been shown its advantage to activate the peripheral muscles for people with neurological conditions. The investigators thus make a hybrid robot-FES rehabilitation system, combining the advantage of robot and FES technologies for stroke motor recovery. The investigators further would like to translate the technologies from lab to home-based training. Thus, the investigators will conduct a randomized, controlled, primarily home-based clinical trial using an ankle robot alone or combined with functional electrical stimulation (FES) to treat sensorimotor and locomotion impairments post-stroke.
Assessment Followed by Home-based Hybrid Robot + FES Rehabilitation Post-stroke
Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.
| Inclusion Criteria | Exclusion Criteria |
|---|---|
|
|
Sponsor: University of Maryland, Baltimore
These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.