Low level transcutaneous vagus nerve stimulation (LLTS) involves delivery of electrical impulses transcutaneously at the auricular branch of vagus nerve and it has been shown to have anti-inflammatory and anti-arrhythmic effects. In previous studies from our laboratory, we found that LLTS significantly suppressed atrial fibrillation (AF) inducibility and decreased AF duration. The anti-arrhythmic effects of LLTS were similar to those delivered to the cervical VN trunk. LLTS for just one hour significantly shortened the AF duration and decreased inflammatory cytokines. We have also shown that LLTS leads to favorable heart rate variability (HRV) changes and cardiac mechanics in patients with diastolic dysfunction. These results support the use of LLTS as a novel non-pharmacological, non-ablative treatment modality for AF and possibly other inflammatory conditions. However, the optimal stimulation parameters of LLTS remain to be determined. In this study, we aim to examine the effect of 2 different frequencies (5Hz and 20Hz) and 2 different amplitudes (50% below the pain threshold and 1mA below the pain threshold) of LLTS on heart rate variability with deep breathing (HRVdb), mental arithmetic stress test (MAST), frequency domain measures of heart rate variability (HRV) and brain stem evoked potentials (BSEVP) in healthy volunteers and patients with AF or heart failure with preserved ejection fraction (HFpEF). HRV is a marker of vagus nerve activity and can be easily measured by software calculating the distance between consecutive R waves on the ECG. BSEVP are a surrogate for the central projections of the vagus nerve. Patients will be randomized into 4 groups in a 2x2 factorial design. LLTS will be delivered through a transcutaneous electrical nerve stimulation (TENS) device for 15 minutes. HRVdb, HRV and BSEVP will be measured before and after LLTS and compared.
Atrial Fibrillation, Heart Failure, Diastolic
Low level transcutaneous vagus nerve stimulation (LLTS) involves delivery of electrical impulses transcutaneously at the auricular branch of vagus nerve and it has been shown to have anti-inflammatory and anti-arrhythmic effects. In previous studies from our laboratory, we found that LLTS significantly suppressed atrial fibrillation (AF) inducibility and decreased AF duration. The anti-arrhythmic effects of LLTS were similar to those delivered to the cervical VN trunk. LLTS for just one hour significantly shortened the AF duration and decreased inflammatory cytokines. We have also shown that LLTS leads to favorable heart rate variability (HRV) changes and cardiac mechanics in patients with diastolic dysfunction. These results support the use of LLTS as a novel non-pharmacological, non-ablative treatment modality for AF and possibly other inflammatory conditions. However, the optimal stimulation parameters of LLTS remain to be determined. In this study, we aim to examine the effect of 2 different frequencies (5Hz and 20Hz) and 2 different amplitudes (50% below the pain threshold and 1mA below the pain threshold) of LLTS on heart rate variability with deep breathing (HRVdb), mental arithmetic stress test (MAST), frequency domain measures of heart rate variability (HRV) and brain stem evoked potentials (BSEVP) in healthy volunteers and patients with AF or heart failure with preserved ejection fraction (HFpEF). HRV is a marker of vagus nerve activity and can be easily measured by software calculating the distance between consecutive R waves on the ECG. BSEVP are a surrogate for the central projections of the vagus nerve. Patients will be randomized into 4 groups in a 2x2 factorial design. LLTS will be delivered through a transcutaneous electrical nerve stimulation (TENS) device for 15 minutes. HRVdb, HRV and BSEVP will be measured before and after LLTS and compared.
The Effect of Different Low-Level Tragus Stimulation Parameters On Autonomic Nervous System Function
-
University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States, 73104
Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.
For general information about clinical research, read Learn About Studies.
21 Years to 90 Years
ALL
Yes
University of Oklahoma,
Stavros Stavrakis, MD, PhD, PRINCIPAL_INVESTIGATOR, University of Oklahoma
2025-02