The purpose of this study is to identify abnormal brain signals associated with Obsessive Compulsive Disorder (OCD) and psychiatric symptoms and to investigate novel therapeutic stimulation sites. While treating OCD with standard deep brain stimulation (DBS) therapy, the investigators will also monitor the activity of the anterior cingulate and prefrontal cortex, a region known be involved with OCD, decision making, and emotion regulation, and the investigators will identify abnormal activity corresponding to the severity of a patient's OCD. The investigators will also investigate whether it is possible for stimulation delivered to these parts of the brain can improve OCD symptoms. These investigations have the potential to aid in the development of improved forms of DBS that can better target abnormal OCD brain signatures in the future. The investigators will implant a cortical electrode in addition to the ALIC DBS electrode and connect these to an implantable pulse generator that care store field potential data (Medtronic Percept). The decision whether the lead is placed in the prefrontal or cingulate cortex bilaterally will be based upon considerations of the surgical risks for a particular patient based upon their anatomy and the required surgical approach. At multiple time points post-implantation up to 2 years, in our clinic or patient's homes, cortical and subcortical signals will be recorded. Data will be collected while patient are resting or engaged in symptom provocation tasks, emotional/cognitive tasks while cortical stimulation is on and off. In addition to brain signal recordings, symptoms will be assessed using validated questionnaires and tasks to allow identification of neurophysiological correlates of OCD symptoms.
Obsessive-Compulsive Disorder
The purpose of this study is to identify abnormal brain signals associated with Obsessive Compulsive Disorder (OCD) and psychiatric symptoms and to investigate novel therapeutic stimulation sites. While treating OCD with standard deep brain stimulation (DBS) therapy, the investigators will also monitor the activity of the anterior cingulate and prefrontal cortex, a region known be involved with OCD, decision making, and emotion regulation, and the investigators will identify abnormal activity corresponding to the severity of a patient's OCD. The investigators will also investigate whether it is possible for stimulation delivered to these parts of the brain can improve OCD symptoms. These investigations have the potential to aid in the development of improved forms of DBS that can better target abnormal OCD brain signatures in the future. The investigators will implant a cortical electrode in addition to the ALIC DBS electrode and connect these to an implantable pulse generator that care store field potential data (Medtronic Percept). The decision whether the lead is placed in the prefrontal or cingulate cortex bilaterally will be based upon considerations of the surgical risks for a particular patient based upon their anatomy and the required surgical approach. At multiple time points post-implantation up to 2 years, in our clinic or patient's homes, cortical and subcortical signals will be recorded. Data will be collected while patient are resting or engaged in symptom provocation tasks, emotional/cognitive tasks while cortical stimulation is on and off. In addition to brain signal recordings, symptoms will be assessed using validated questionnaires and tasks to allow identification of neurophysiological correlates of OCD symptoms.
Cortical Stimulation to Treat Obsessive Compulsive Disorder
-
UCSF Nancy Friend Pritzker Psychiatry Building, San Francisco, California, United States, 94107
Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.
For general information about clinical research, read Learn About Studies.
22 Years to 75 Years
ALL
No
Andrew Moses Lee, MD, PhD,
Andrew M Lee, MD, PhD, PRINCIPAL_INVESTIGATOR, University of California, San Francisco
2026-08-01