This clinical trial focuses on testing the efficacy of different digital interventions to promote re-engagement in cancer-related long-term follow-up care for adolescent and young adult (AYA) survivors of childhood cancer.
Breast surgery, which includes mastectomy, breast reconstructive surgery, or lumpectomies with sentinel node biopsies, may lead to the development of chronic pain and long-term opioid use. In the era of an opioid crisis, it is important to risk-stratify this surgical population for risk of these outcomes in an effort to personalize pain management. The opioid epidemic in the United States resulted in more than 40,000 deaths in 2016, 40% of which involved prescription opioids. Furthermore, it is estimated that 2 million patients become opioid-dependent after elective, outpatient surgery each year. After major breast surgery, chronic pain has been reported to develop anywhere between 35% - 62% of patients, while about 10% use long-term opioids. Precision medicine is a concept at which medical management is tailored to an individual patient based on a specific patient's characteristics, including social, demographic, medical, genetic, and molecular/cellular data. With a plethora of data specific to millions of patients, the use of artificial intelligence (AI) modalities to analyze big data in order to implement precision medicine is crucial. We propose to prospectively collect rich data from patients undergoing various breast surgeries in order to develop predictive models using AI modalities to predict patients at-risk for chronic pain and opioid use.
Development of Predictive Models Using Artificial Intelligence for Postoperative Chronic Pain and Opioid Use Following Breast Surgery: A Prospectively-Designed Study
Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.
| Inclusion Criteria | Exclusion Criteria |
|---|---|
|
|
Sponsor: University of California, San Diego
These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.