Despite rapidly advancing developments in targeted therapeutics and genetic sequencing, persistent limits in the accuracy and throughput of clinical phenotyping has led to a widening gap between the potential and the actual benefits realized by precision medicine. Recent advances in machine learning and image processing techniques have shown that machine learning models can identify features unrecognized by human experts and more precisely/accurately assess common measurements made in clinical practice. The investigators have developed an algorithm, termed EchoNet-LVH, to identify cardiac hypertrophy and identify patients who would benefit from additional screening for cardiac amyloidosis and will prospectively evaluate its accuracy in identifying patients whom would benefit from additional screening for cardiac amyloidosis.
Cardiac Amyloidosis
Despite rapidly advancing developments in targeted therapeutics and genetic sequencing, persistent limits in the accuracy and throughput of clinical phenotyping has led to a widening gap between the potential and the actual benefits realized by precision medicine. Recent advances in machine learning and image processing techniques have shown that machine learning models can identify features unrecognized by human experts and more precisely/accurately assess common measurements made in clinical practice. The investigators have developed an algorithm, termed EchoNet-LVH, to identify cardiac hypertrophy and identify patients who would benefit from additional screening for cardiac amyloidosis and will prospectively evaluate its accuracy in identifying patients whom would benefit from additional screening for cardiac amyloidosis.
Artificial Intelligence Guided Echocardiographic Screening of Rare Diseases (EchoNet-Screening)
-
Cedars-Sinai Medical Centre (Los Angeles), Los Angeles, California, United States, 90048
Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.
For general information about clinical research, read Learn About Studies.
18 Years to
ALL
No
Cedars-Sinai Medical Center,
2025-06-01