This clinical trial focuses on testing the efficacy of different digital interventions to promote re-engagement in cancer-related long-term follow-up care for adolescent and young adult (AYA) survivors of childhood cancer.
This study aims to predict and minimize post-discharge adverse events (AEs) during care transitions through early identification and escalation of patient-reported symptoms to inpatient and ambulatory clinicians by way of predictive algorithms and clinically integrated digital health apps. We will (1) develop and prospectively validate a predictive model of post-discharge AEs for patients with multiple chronic conditions (MCC); (2) combine, adapt, extend, and iteratively refine our EHR-integrated digital health infrastructure in a series of design sessions with patient and clinician participants; (3) conduct a RCT to evaluate the impact of ePRO monitoring on post-discharge AEs for MCC patients discharged from the general medicine service across Brigham Health; and (4) use mixed methods to evaluate barriers and facilitators of implementation and use as we develop a plan for sustainability, scale, and dissemination.
Real-time Symptom Monitoring Using ePROs to Prevent Adverse Events During Care Transitions
Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.
| Inclusion Criteria | Exclusion Criteria |
|---|---|
|
|
Sponsor: Brigham and Women's Hospital
These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.