This study proposes to use hyperpolarized xenon-129 Magnetic Resonance Imaging (MRI) to study lung function of COPD patients who will receive endobronchial valve (EBV) therapy as part of their clinical standard-of-care. Once inhaled, HP xenon can provide information to imagers regarding functionality across specific regions of the lungs through the assessment of the replacement of air during the normal breathing cycle, how much oxygen is in the airspaces, and if the normal spongy tissue structure has been compromised by lung disease. Pre- (baseline) and post-EBV (follow-up) lung function imaging with HPXe will potentially lead to be better understand disease progression and treatment mechanism.
COPD
This study proposes to use hyperpolarized xenon-129 Magnetic Resonance Imaging (MRI) to study lung function of COPD patients who will receive endobronchial valve (EBV) therapy as part of their clinical standard-of-care. Once inhaled, HP xenon can provide information to imagers regarding functionality across specific regions of the lungs through the assessment of the replacement of air during the normal breathing cycle, how much oxygen is in the airspaces, and if the normal spongy tissue structure has been compromised by lung disease. Pre- (baseline) and post-EBV (follow-up) lung function imaging with HPXe will potentially lead to be better understand disease progression and treatment mechanism.
Functional and Structural Assessment of Endobronchial Valve Recipients Using Dynamic Hyperpolarized Xenon-129 MRI
-
Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, United States, 19104
Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.
For general information about clinical research, read Learn About Studies.
18 Years to 85 Years
ALL
No
Xemed LLC,
Kevin Ma, MD, PRINCIPAL_INVESTIGATOR, University of Pennsylvania
2026-07-31