This clinical trial focuses on testing the efficacy of different digital interventions to promote re-engagement in cancer-related long-term follow-up care for adolescent and young adult (AYA) survivors of childhood cancer.
Severe acute respiratory syndrome coronavirus 2-mediated coronavirus disease (COVID-19) is an evolutionarily unprecedented natural experiment that causes major changes to the host immune system. We propose to develop a test that accurately predicts short- and long-term (within one-year) outcomes in hospitalized COVID-19 patients broadly reflecting US demographics who are at increased risk of adverse outcomes from COVID-19 using both clinical and molecular data. We will enroll patients from a hospitalized civilian population in one of the country's largest metropolitan areas and a representative National Veteran's population.
Multi-Dimensional Outcome Prediction Algorithm for Hospitalized COVID-19 Patients
Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.
| Inclusion Criteria | Exclusion Criteria |
|---|---|
|
|
Sponsor: University of California, Los Angeles
These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.