Our specific aim is to examine the effects of TMS on spatial processing during goal-directed navigation. In these experiments the investigators will utilize a scalp-recorded brain oscillation called right posterior theta that is believed to index the sensitivity of the parahippocampal cortex to spatial context. Here the investigators will asked whether this electrophysiological signal can be modulated up or down using TMS while participants engage in virtual navigation tasks, and if so, whether it would affect the spatial encoding of rewards and subsequent choices during task performance.
Spatial Navigation
Our specific aim is to examine the effects of TMS on spatial processing during goal-directed navigation. In these experiments the investigators will utilize a scalp-recorded brain oscillation called right posterior theta that is believed to index the sensitivity of the parahippocampal cortex to spatial context. Here the investigators will asked whether this electrophysiological signal can be modulated up or down using TMS while participants engage in virtual navigation tasks, and if so, whether it would affect the spatial encoding of rewards and subsequent choices during task performance.
Modulating Goal-directed Navigation Using Noninvasive Brain Stimulation
-
Rutgers University - Newark, Newark, New Jersey, United States, 07102
Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.
For general information about clinical research, read Learn About Studies.
18 Years to 55 Years
ALL
Yes
Rutgers, The State University of New Jersey,
Travis E Baker, PRINCIPAL_INVESTIGATOR, Rutgers University
2025-08-31