Postural instability is a common symptom of vestibular dysfunction that impacts a person's day-to-day activities. Vestibular rehabilitation is effective in decreasing dizziness, visual symptoms and improving postural control through several mechanisms including sensory reweighting. As part of the sensory reweighting mechanisms, vestibular activation training with headshake activities influence vestibular reflexes. However, combining challenging vestibular and postural tasks to facilitate more effective rehabilitation outcomes is under-utilized. The novel concurrent headshake and weight shift training (Concurrent HS-WST) is purported to train the vestibular system to directly impact the postural control system simultaneously and engage sensory reweighting to improve balance. Young healthy participants will perform the training by donning a virtual reality headset with an overhead harness on and a spotter present to prevent any falls. The investigators propose that this training strategy would show improved outcomes over traditional training methods by improving vestibular-ocular reflex (VOR) gains, eye movement variability, sensory reweighting and promoting postural balance. The findings of this study may guide clinicians to develop rehabilitation methods for vestibular postural control in neurological populations with vestibular and/or sensorimotor control impairment.
Virtual Reality, Vestibular Training, Balance Assessment
Postural instability is a common symptom of vestibular dysfunction that impacts a person's day-to-day activities. Vestibular rehabilitation is effective in decreasing dizziness, visual symptoms and improving postural control through several mechanisms including sensory reweighting. As part of the sensory reweighting mechanisms, vestibular activation training with headshake activities influence vestibular reflexes. However, combining challenging vestibular and postural tasks to facilitate more effective rehabilitation outcomes is under-utilized. The novel concurrent headshake and weight shift training (Concurrent HS-WST) is purported to train the vestibular system to directly impact the postural control system simultaneously and engage sensory reweighting to improve balance. Young healthy participants will perform the training by donning a virtual reality headset with an overhead harness on and a spotter present to prevent any falls. The investigators propose that this training strategy would show improved outcomes over traditional training methods by improving vestibular-ocular reflex (VOR) gains, eye movement variability, sensory reweighting and promoting postural balance. The findings of this study may guide clinicians to develop rehabilitation methods for vestibular postural control in neurological populations with vestibular and/or sensorimotor control impairment.
Effects of Vestibular Training on Postural Control of Healthy Adults Using Virtual Reality
-
Clarkson University, Potsdam, New York, United States, 13699
Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.
For general information about clinical research, read Learn About Studies.
18 Years to 35 Years
ALL
Yes
Clarkson University,
2024-09-30