This clinical trial focuses on testing the efficacy of different digital interventions to promote re-engagement in cancer-related long-term follow-up care for adolescent and young adult (AYA) survivors of childhood cancer.
Motor adaptation and generalization are believed to occur via the integration of various forms of sensory feedback for a congruent representation of the body's position in space along with estimation of inertial properties of the limb segments for accurate specification of movement. Thus, motor adaptation is often studied within curated environments incorporating a "mis-match" between different sensory systems (i.e. a visual field shift via prism googles or a visuomotor rotation via virtual reality environment) and observing how motor plans change based on this mis-match. However, these adaptations are environment-specific and show little generalization outside of their restricted experimental setup. There remains a need for motor adaptation research that demonstrates motor learning that generalizes to other environments and movement types. This work could then inform physical and occupational therapy neurorehabilitation interventions targeted at addressing motor deficits.
Examining Lateralized Aspects of Motor Control Using Non-invasive Neural Stimulation
Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.
| Inclusion Criteria | Exclusion Criteria |
|---|---|
|
|
Sponsor: Virginia Commonwealth University
These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.