This clinical trial focuses on testing the efficacy of different digital interventions to promote re-engagement in cancer-related long-term follow-up care for adolescent and young adult (AYA) survivors of childhood cancer.
Obstructive sleep apnea (OSA) is a highly prevalent disorder that has major consequences for cardiovascular health, neurocognitive function, risk of traffic accidents, daytime sleepiness, and quality of life. For years, a "classic" model of OSA has been used to describe the disorder, which fails to capture it's complexity. Recently, a model for OSA called drive-dependent OSA was discovered be more prevalent in the OSA population. The drive-dependent subgroup benefits exclusively from increased ventilation, increased dilator muscle activity, and reduced event risk when drive spontaneously rises. This study seeks to provide direct evidence that reducing the loss of drive prevents the loss of ventilation, pharyngeal muscle activity, and thus the onset of OSA respiratory events, specifically in "drive-dependent" but not "classic" OSA. This will be achieved using CO2 delivered at precise times during breaths in sleep to prevent loss of overall ventilatory drive.
Reversible Effect of Falling Ventilatory Drive in Drive-dependent OSA
Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.
| Inclusion Criteria | Exclusion Criteria |
|---|---|
|
|
Sponsor: Brigham and Women's Hospital
These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.