This study is a prospective observational study for subjects with idiopathic pulmonary fibrosis (IPF) or non-IPF interstitial lung diseases (ILD). The purpose of this study is to compare whether imaging patterns from high-resolution computed tomography (HRCT) at baseline can predict worsening. Single Time point Prediction (STP) is a score derived from an artificial intelligenc/ machine learning (AI/ML) using the radiomic features from a HRCT scan that quantifies the imaging patterns of short-term predictive worsening.
Pulmonary Fibrosis
This study is a prospective observational study for subjects with idiopathic pulmonary fibrosis (IPF) or non-IPF interstitial lung diseases (ILD). The purpose of this study is to compare whether imaging patterns from high-resolution computed tomography (HRCT) at baseline can predict worsening. Single Time point Prediction (STP) is a score derived from an artificial intelligenc/ machine learning (AI/ML) using the radiomic features from a HRCT scan that quantifies the imaging patterns of short-term predictive worsening.
Single Time Point Prediction as Earlier Diagnosis of Progressive Pulmonary Fibrosis
-
UCLA, Los Angeles, California, United States, 90024
Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.
For general information about clinical research, read Learn About Studies.
18 Years to
ALL
No
University of California, Los Angeles,
Samuel Weigt, MD, PRINCIPAL_INVESTIGATOR, UCLA Division of Pulmonary, Critical Care, and Hospitals
Jonathan Goldin, MD, PRINCIPAL_INVESTIGATOR, Radiological Sciences at the University of California, Los Angeles
2028-08-19