It has been demonstrated that the human lumbosacral spinal cord can be neuromodulated with epidural (ESS) and transcutaneous (TSS) spinal cord stimulation to enable recovery of standing and volitional control of the lower limbs after complete motor paralysis due to spinal cord injury (SCI). The work proposed herein will examine and identify distinct electrophysiological mechanisms underlying transcutaneous spinal stimulation (TSS) and epidural spinal stimulation (ESS) to define how these approaches determine the ability to maintain self-assisted standing after SCI.
Spinal Cord Injuries, Neuromodulation
It has been demonstrated that the human lumbosacral spinal cord can be neuromodulated with epidural (ESS) and transcutaneous (TSS) spinal cord stimulation to enable recovery of standing and volitional control of the lower limbs after complete motor paralysis due to spinal cord injury (SCI). The work proposed herein will examine and identify distinct electrophysiological mechanisms underlying transcutaneous spinal stimulation (TSS) and epidural spinal stimulation (ESS) to define how these approaches determine the ability to maintain self-assisted standing after SCI.
Harnessing Neuroplasticity of Postural Sensorimotor Networks Using Non-Invasive Spinal Neuromodulation to Maximize Functional Recovery After Spinal Cord Injury
-
Houston Methodist Hospital, Houston, Texas, United States, 77030
Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.
For general information about clinical research, read Learn About Studies.
22 Years to 60 Years
ALL
Yes
The Methodist Hospital Research Institute,
Dimitry Sayenko, MD, PhD, PRINCIPAL_INVESTIGATOR, The Methodist Hospital Research Institute
2027-08-31