In the United States, more than 795,000 people have a stroke every year. Motor impairment after a stroke is common and can be debilitating. To date, there remain few treatments available to help improve motor recovery after a stroke, making this an important area of research. Novel use of neuromodulation such as Invasive Vagus Nerve Stimulation (VNS) has been shown to improve motor recovery in stroke patients. Vagus nerve stimulation (VNS), in which the nerve is stimulated with electrical pulses, has demonstrated success for a variety of conditions, including inflammation, depression, cognitive dysfunction, chronic fatigue, headaches/migraines, pain, insomnia, and cardiovascular issues. Very recently, non-invasive options have been developed and might be a promising alternative. The research in this area is still very limited and much more research is needed to investigate non-invasive/trancutaneous auricular vagus nerve stimulation (taVNS) related biomechanisms and to further support its efficacy in acute patients. The purpose of this study is to build upon the current research to investigate changes in electrical brain activity (using electrophysiology) related to improvements in both motor and cognitive recovery following the use of taVNS in acute stroke patients.
Stroke
In the United States, more than 795,000 people have a stroke every year. Motor impairment after a stroke is common and can be debilitating. To date, there remain few treatments available to help improve motor recovery after a stroke, making this an important area of research. Novel use of neuromodulation such as Invasive Vagus Nerve Stimulation (VNS) has been shown to improve motor recovery in stroke patients. Vagus nerve stimulation (VNS), in which the nerve is stimulated with electrical pulses, has demonstrated success for a variety of conditions, including inflammation, depression, cognitive dysfunction, chronic fatigue, headaches/migraines, pain, insomnia, and cardiovascular issues. Very recently, non-invasive options have been developed and might be a promising alternative. The research in this area is still very limited and much more research is needed to investigate non-invasive/trancutaneous auricular vagus nerve stimulation (taVNS) related biomechanisms and to further support its efficacy in acute patients. The purpose of this study is to build upon the current research to investigate changes in electrical brain activity (using electrophysiology) related to improvements in both motor and cognitive recovery following the use of taVNS in acute stroke patients.
EEG Changes Related to taVNS in Stroke Patients: a Preliminary Study
-
Casa Colina Hospital and Centers for Healthcare, Pomona, California, United States, 91769
Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.
For general information about clinical research, read Learn About Studies.
18 Years to 80 Years
ALL
No
Casa Colina Hospital and Centers for Healthcare,
Elliott Block, MD, PRINCIPAL_INVESTIGATOR, Casa Colina Hospital and Centers for Healthcare
2025-06-30