The goal of this observational study is to use a genetic test to help doctors prescribe the most effective medications after a patient has a stroke. One type of stroke is caused by a blood clot in brain vessels. After a patient has this kind of stroke, they are often given a combination of two blood thinners to prevent it from happening again. One of these blood thinners, called clopidogrel, is less effective in some people due to differences in their DNA. Clopidogrel needs to be activated by a specific enzyme in the body known as CYP2C19. This enzyme does not work as well if there are variations in the section of DNA that tells the body how to make CYP2C19. It can be predicted who has less CYP2C19 enzyme activity with a genetic test. If these patients are given a different blood thinner, it can reduce their risk of another stroke compared to if they are given clopidogrel. The main questions this study aims to answer are: * What are the best strategies to implement this genetic test in the hospital? * Does implementation of this genetic test change providers' decisions on which medication to prescribe after a participant has a stroke? Participants in this study will have a genetic test done onsite looking for variations in the section of DNA that tells the body how to make CYP2C19. This genetic test will only look for 11 known variations; the genome will not be sequenced. The investigators will alert the doctor of the patient's test results so they can prescribe the appropriate blood thinner. Through this, the investigators will learn the best practices for successful implementation of this genetic test.
Ischemic Stroke, CYP2C19 Polymorphism
The goal of this observational study is to use a genetic test to help doctors prescribe the most effective medications after a patient has a stroke. One type of stroke is caused by a blood clot in brain vessels. After a patient has this kind of stroke, they are often given a combination of two blood thinners to prevent it from happening again. One of these blood thinners, called clopidogrel, is less effective in some people due to differences in their DNA. Clopidogrel needs to be activated by a specific enzyme in the body known as CYP2C19. This enzyme does not work as well if there are variations in the section of DNA that tells the body how to make CYP2C19. It can be predicted who has less CYP2C19 enzyme activity with a genetic test. If these patients are given a different blood thinner, it can reduce their risk of another stroke compared to if they are given clopidogrel. The main questions this study aims to answer are: * What are the best strategies to implement this genetic test in the hospital? * Does implementation of this genetic test change providers' decisions on which medication to prescribe after a participant has a stroke? Participants in this study will have a genetic test done onsite looking for variations in the section of DNA that tells the body how to make CYP2C19. This genetic test will only look for 11 known variations; the genome will not be sequenced. The investigators will alert the doctor of the patient's test results so they can prescribe the appropriate blood thinner. Through this, the investigators will learn the best practices for successful implementation of this genetic test.
Implementation of Onsite Rapid CYP2C19 Assay for Genotype Guided Dual Antiplatelet Therapy After Acute Ischemic Stroke
-
University of Virginia, Charlottesville, Virginia, United States, 22903
Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.
For general information about clinical research, read Learn About Studies.
18 Years to
ALL
No
University of Virginia,
Rachael M Stone, PharmD, PRINCIPAL_INVESTIGATOR, University of Virginia
2026-06